

PNNL-35785

FAST-1.2.1 User Installation and Verification Guide

Developed Under NQA-1-2017

March 2024

Kenneth J Geelhood David V Colameco Christine Goodson Travis J Zipperer Walter G Luscher Alice Chung James R Corson Lucas Kyriazidis Josh Whitman

Prepared for the U.S. Nuclear Regulatory Commission Office of Nuclear Regulatory Research Under Contract DE-AC05-76RL01830 Interagency Agreement: 31310019N0001 Task Order Number: 31310019F0047

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes **any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.**

PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062; ph: (865) 576-8401 fax: (865) 576-5728 email: <u>reports@adonis.osti.gov</u>

Available to the public from the National Technical Information Service 5301 Shawnee Rd., Alexandria, VA 22312 ph: (800) 553-NTIS (6847) email: orders@ntis.gov <<u>https://www.ntis.gov/about</u>> Online ordering: <u>http://www.ntis.gov</u>

FAST-1.2.1 User Installation and Verification Guide

Developed Under NQA-1-2017

March 2024

Kenneth J Geelhood David V Colameco Christine Goodson Travis J Zipperer Walter G Luscher Alice Chung James R Corson Lucas Kyriazidis Josh Whitman

Prepared for the U.S. Nuclear Regulatory Commission Office of Nuclear Regulatory Research Under Contract DE-AC05-76RL01830 Interagency Agreement: 31310019F0047

Pacific Northwest National Laboratory Richland, Washington 99354

Project Summary and Document Characteristics

Project Name	FAST Fuel Performance Code Development and Assessment	
Project No.	77701 Task 31310019F0047	
Product Management Office No. / Organization	PM053/ Nuclear Science and Legacy Waste	

Approvals

Role	Name	Signature	Date
Code Custodian	David Colameco		
Lead Software Developer	Ken Geelhood		
Project Manager	Katie Wagner		

Revision History

Revision	Date	Comments
0	March 2024	Initial Release

Introduction

The purpose of this document is to provide the user information about the installation of Fuel Analysis for Steady state and Transient (FAST)-1.2.1 on their computers or servers. General information about the code and supported operating systems is described in Section 1.0. Self-service oriented FAST-1.2.1 software licensing steps are described in Section 2.0. An installation verification test suite is provided with FAST-1.2.1 and described in Section 3.0. A convenience script for converting Fuel Rod Analysis Program – Constant (FRAPCON) to FAST inputs is discussed in Section 4.0.

FAST-1.2.1 was developed and released under a software quality assurance program based upon NQA-1-2017 at Pacific Northwest National Laboratory (PNNL). FAST-1.2.1 is the latest baseline code. The installation verification test suite contains both steady state and transient Anticipated Operation Occurrences (AOOs), accident conditions, such as Reactivity Initiated Accidents (RIAs) and Loss of Coolant Accidents (LOCAs).

Acronyms and Abbreviations

AOO	Anticipated Operational Occurrences
ASME	American Society of Mechanical Engineers
FAST	Fuel Analysis for Steady state and Transient
FGR	Fission Gas Release
FRAPCON	Fuel Rod Analysis Program – CONstant
hash	Hash Function used to map data of an arbitrary size to fixed-size values.
LOCA	Loss of Coolant Accident
LWR	Light Water Reactor
NRC	United States Nuclear Regulatory Commission
NQA-1	Nuclear Quality Assurance – 1
MD5	Widely used 128-bit message-digest hash value for uniquely identifying files.
PNNL	Pacific Northwest National Laboratory
POC	Point of Contact
QA	Quality Assurance
QAP	Quality Assurance Plan
RIA	Reactivity Initiated Accident
SHA-1	Widely used 160-bit message-digest hash value for uniquely identifying files.

Definitions

This Section provides definitions specific to the software project.

1		
Assessment	A review, evaluation, inspection, test, check, surveillance, or audit to determine and document whether items, processes, systems, or services meet specified requirements and perform effectively. (NQA-1-2017)	
Acceptance Testing	The process of exercising or evaluating a system or system component by manual or automated means to ensure that it satisfies the specific requirements and to identify differences between expected and actual results in the operating environment. (NQA-1-2017)	
Configuration Item	A collection of hardware or software elements treated as unit for the purpose of configuration control. (NQA-1-2017)	
Configuration Management (software)	The process of identifying and defining the configuration items in a system (i.e. software and hardware), controlling the release and change of those items throughout the system's life cycle, and recording and reporting the status of configuration items and change requests. (NQA-1-2017)	
Baseline	A specification or product that has been formally reviewed and agreed upon, that thereafter serves as the basis for use and further development, and that can be changed only by using an approved control process. (NQA-1-2017)	
Error	A condition deviating from an established baseline, including deviations from the current approved computer program and its baseline requirements. (NQA-1-2017)	
Confluence	Confluence is an easy-to-use web-based tool that is utilized for electronically documenting software in a wiki format. Documents can also be controlled. It offers the ability to document, collaborate, and share.	
Graded Approach	 The process of ensuring that the level of analysis, documentation, and actions used to comply with a requirement is commensurate with: a) the relative importance to safety, safeguards, and security b) the magnitude of any hazard involved c) the life-cycle stage of a facility or item d) the programmatic mission of a facility e) the particular characteristics of a facility or item f) the relative importance of radiological and nonradiological hazards g) any other relevant factors (NQA-1-2017) 	
HDI	A web search engine that houses PNNL's Lab-level requirements and procedures and considerations for conducting work. The content is delivered via graphical workflows (step-by-step flowcharts with steps for each activity), through narrative work controls (listing of requirements and considerations for managing specific risks and hazards), or in forms or exhibits (linked documents that include greater detail).	
Independent	(Independent Reviews or Independent Testing) Person sufficiently independent with respect to the material/product they are reviewing/testing; they did not perform the work they are reviewing or testing. Staff also possess enough subject matter expertise to adequately review/test/evaluate.	
Operating Environment	A collection of software, firmware, and hardware elements that provide for the execution of computer programs. (NQA-1-2017)	

Software Design Verification	The process of determining if the product of the software design activity fulfills the software design requirements. (NQA-1-2017)
Software Engineering	 (a) The application of a systematic, disciplined, quantifiable approach to the development, operation, and maintenance of software; that is, the application of engineering to software. (b) The study of approaches in (a) (NQA-1-2017)
Test Case	A set of test inputs, execution conditions, and expected results developed for a particular objective, such as to exercise a particular program path or to verify compliance with a specific requirement. (NQA-1-2017)
Test Plan (Procedure)	A document that describes the approach to be followed for testing a system or component. Typical contents identify items to be tested, tasks to be performed, and responsibilities for the testing activities. (NQA-1-2017)
Verification	Mathematical proof of the correctness of algorithms, by confirming that code subroutines and functions produce the expected numerical output.
Validation	The process of evaluating software to determine whether it satisfies specified requirements, by comparing code predictions to experimental data.
Unit test	Process or code developed to test the numeric accuracy and functionality of new or modified subroutines and functions.
Unit test suite	Set of unit tests created while developing and maintaining FAST.
Verification test suite	Set of input files that exercise all the code options, used to verify that code changes do not negatively impact code performance, and that results are as expected.
Validation test suite	Set of input files used to validate the codes' predictions against experimental measurements, to quantify the accuracy, bias, and uncertainty of code predictions.

Contents

Project	t Summ	ary and Document Characteristics	ii
Introdu	iction		iii
Acrony	ms and	Abbreviations	iv
Definiti	ions		V
Conter	nts		vii
1.0	Genera	al Software Information	9
	1.1	Acquiring the Software	10
2.0	Self-Se	ervice Licensing	12
3.0	Installa	ation Verification Suite	16
	3.1	Expected Differences	17
	3.2	FAST-1.2.1 Code Change Requests	19
4.0	Conve	nience Scripts	20
	4.1	Execution of FRAPCON_to_FAST.py	20
	4.2	FAST-1.2.1 AIG	20
	4.3	FRAPlot	20
5.0	Refere	nces	21
Appen	dix A –	Windows Server 2019 Standard Differences	A.1
Appen	dix B –	FAST Change Request Form	B.1

Figures

Figure 1: Window's CertUtil Hashing Example	11
Figure 2: Linux md5sum and sha1sum Example	11
Figure 3: FAST Website FAST-1.2.1 Link Location	12
Figure 4: FAST Website Licensing Link Location	12
Figure 5: FAST Licensing Webpage	13
Figure 6: Windows License Request Generation	13
Figure 7: Linux License Request Generation	14
Figure 8: FAST License Request Website File Selection	14
Figure 9: FAST License Request Website Submission	15
Figure 10: FAST License Request Completion	15

Tables

Table 1 – FAST-1.2.1 Executable Identification	9
Table 2 – FAST-1.2.1 Tested Operating Systems	9
Table 3 – FAST-1.2.1 File Identification	10
Table 4 – FAST-1.2.1 File Identification	10
Table 5 – FAST Verification Suite Tests	16

1.0 General Software Information

FAST-1.2.1 has been compiled on Windows 11 and Red Hat Enterprise Linux 7.9 operating systems. The compiled executables in Table 1 were then tested on Windows and Linux operating systems listed in Table 2 using the test suites available in Section 3.0. FAST is not currently supported on MacOS.

Executable	OS	Hash
FAST-1.2.1.exe	Windows	MD5 746b7e40bc5a8f29b66c8a04216a42bd SHA-1 0e6bbff62a03bfa64d466eb0efb55745e89dd0dc
FAST-1.2.1	Linux	MD5 b7bb18a834b3652477d38be04dbaff2b SHA1 ce668002b0ef73a4ab5b51870e7249456cf88aad

Table 1 – FAST-1.2.1 Executable Identification

Due to the large variety of operating systems available to our users' group, not all possibilities can be tested. The list in Table 2 is an attempt to provide wide coverage of currently supported systems: Windows and Linux. If your installation on a current operating system not listed below results in larger than expected differences or difficulties, please contact PNNL (see website contact information) and we will attempt to identify and correct/mitigate the issue. The list in Table 2 below is comprehensive enough that unforeseen difficulties with installation should be rare.

Operating System	Version	Comments
Windows 10 Enterprise	22H2	OS Build 19045.2006
Windows 11 Enterprise	23H2	OS Build 22631.2428
Windows 11 Pro for Workstations	23H2	OS Build 22631.3296
Windows Server Standard 2019	1809	OS Build 17763.3650
Windows Server Standard 2022	21H2	OS Build 20348.587
Debian Bookworm	12.5	Linux Kernel 6.1.0-18-amd64
Fedora Workstation	39.0	Linux Kernel 6.7.9-200.fc39.x86_64
openSUSE Leap	15.5	Linux Kernel 5.14.21-150500.55.52-default
Red Hat Enterprise Linux	7.9	Linux Kernel 3.10.0-1160.105.1.el7.x86_64
Rocky	9.3	Linux Kernel 5.14.0-362.24.1.el9_3.x86_64

Table 2 – FAST-1.2.1 Tested Operating Systems

1.1 Acquiring the Software

The FAST website is <u>https://fast.labworks.org.</u> The website contains limited information for visitors not logged in but more documentation and access to the software for logged in visitors. Visitors without log in credentials may apply using the "Join Us" tab on the homepage.

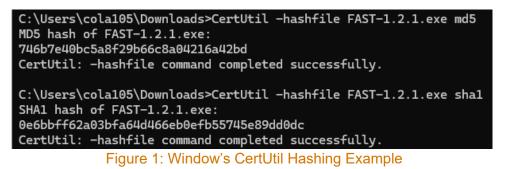
The Codes tab on the homepage lists the codes available for download, FAST-1.2.1, FAST-1.2 FRAPCON-4.0 and FRAPTRAN-2.0. This document will focus on FAST-1.2.1. Follow the link to FAST-1.2.1 and download the zip or tgz file that is applicable to your target machine's file decompression software. Typically, Windows users would choose the zip file while Linux users can decompress either zip or tgz files with preinstalled software. MacOS is not currently supported.

The following hash values are associated with the zip and tgz files along with the text file listing of the contents. The zip and tgz files contain identical contents.

File	OS	Hash
FAST-1.2.1.zip	Windows/Linux	MD5 40db5a1928c7158c4b3c72fe6bcaeb92
FA31-1.2.1.21p	willuows/ Lillux	SHA-1 4bbc72407ee80a9f0da2870a013f1645b2e0fabf
EAST 1 2 1 ton	Windows/Linux	MD5 989cf54b4ca6fffba0ac64dfd028b29d
FAST-1.2.1.tgz	windows/Linux	SHA1 0968b064974bc416b56361c0258eaf1e7f25b685
mdEcum listing	ng Windows/Linux	MD5 6922de52c9c13cbe3637593569418697
md5sum_listing \		SHA1 975f81fa9c2fbbf4d4bb8e464d77dc669ef47c6c
sha1sum_listing	Windows/Linux	MD5 75b6c21cfdc169487cd4b4a8a318ea77
	windows/Linux	SHA1 a1e0dd8441c26486e0335c28460ea439c9265f5e

Table 3 – FAST-1.2.1 File Identification

The Linux command tar -xzvf FAST-1.2.1.tgz will decompress the folder. The FAST-1.2.1.zip and FAST-1.2.1.tgz files have the same contents described in Table 4 below:


Table 4 – FAST-1.2.1 File Identification

Folder	Description
Convenience_Scripts	Python 3 conversion script, AIG, FRAPlot (See Section 4.0)
Installation_Verification	Installation Verification Tests (See Section 3.0)
Linux_Executable	Linux Executable
Linux_FAST_Licensing	Linux Licensing software (See Section 2.0)
Windows_Executable	Windows Executable
Windows_FAST_Licensing	Windows Licensing software (See Section 2.0)

These next steps are primarily for users needing to establish traceability from the identification in Table 1 and 3 above to the final installation location on their machines. These steps may also be used to verify that the executable file was not corrupted during the download and/or transfer process to the final location.

Once the executable and associated files are installed on your target machine, the SHA-1 or MD5 should be checked and compared to Table 1 and Table 3. Other, more secure, hashing algorithms are available such as SHA-2 however it is assumed that MD5 and/or SHA-1 will provide the user confidence the executable was not altered in the download/transfer process. Users that require hashes such as SHA-2 are encouraged to contact PNNL through the website.

Windows offers a pre-installed utility CertUtil and a downloadable utility FCIV available on the support.microsoft.com website. The pre-installed utility will be demonstrated here. Open a command prompt and navigate to the location of your executable or provide the path of the executable. Then execute the command: CertUtil -hashfile FAST-1.2.exe SHA1 (or MD5 in place of SHA1) as shown in Figure 1:

Linux offers md5sum and sha1sum command line utilities as demonstrated in Figure 2 below:

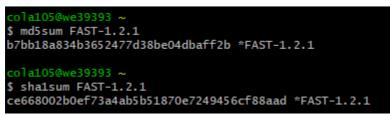


Figure 2: Linux md5sum and sha1sum Example

A matching md5 or sha1 hash provides a very high likelihood that the executables were not corrupted during the download and transfer to the final location on the target machine. If the hashes do not match, try downloading FAST from the website again. Changes to the files change the hash values.

The location of the FAST executable on your target machine depends largely on preferences and your organizations rules or guidelines. The installation verification that is described in Section 3.0 can be performed on your target machine by updating the associated python script.

Linux users may have to install libgfortran.so.5 via the sudo [apt-get, yum, zipper] libgfortran5 for newer linux operating systems, or by installing gcc-12 for older systems to provide needed libraries.

2.0 Self-Service Licensing

Installations of FRAPCON 4.0 and FRAPTRAN 2.0 do not require these licensing steps.

A successfully copied FAST-1.2.1 executable in the target location of the target computer must now be licensed for it to operate. Licensing has been set up as self-service through the FAST website <u>https://fast.labworks.org</u> and the page <u>https://fast.labworks.org/fast_license</u>. Figure 3 below shows the website after clicking the "Codes" tab highlighted in a red box.

	Codes
Announcements 022 Users Group Meeting, ktober 9: 2022 (Bainigh: NCI 021 Users Group Meeting, lovember 4: 2021 (Virtual) 019 Users Group Meeting, entember 22: 2019 (South Wa) KGT-1.0.1 Nov Released All Announcements -	FAST-1.1 A computer code for the calculation of steady-state and transient, thermal-mechanical behavior of code fuel rods for hig burnup. RAST-1.1 now includes design basis accidents such as RiA and LOCAs. RAST-1.1 is protedy developed under NQ4-5-2017.
Meetings AT Meetings •	FAST-1.2 A computer code for the calculation of steady-state and stansient, thermal-mechanical behavior of oxide fuel rods for hig burnup. FAST 1.2 is proudly developed under NGA-1-2017.


Figure 3: FAST Website FAST-1.2.1 Link Location

The link "FAST-1.2.1" in Figure 3 above will take you to the FAST-1.2.1 screen in Figure 4 below.

James	FAST	/ FRAPCON /	FRAPTRAN	
	TEAM	CODES	MEETINGS	PUBLICATIONS
		Codes		
Announcements New EAST-1.2 Zip Posted to the Website 2022 Users Group Meeting, October 9. 2022 (Rieleigh, NC) 2021 Users Group Meeting, November 4. 2021 (Virtual)	burnup.	e for the calculation of steady-stai	e and transient, thermal-mechanical b	ehavior of oxide fuel rods for high
2019 Users Group Meeting, September 22, 2019 (Seattle, WA) FAST-1, 2 Now Released All Announcements	burnup.		e and transient, thermal-mechanical b	ehavior of oxide fuel rods for high
Meetings All Meetings		udly developed under NQA-1-20	7.	
Contact	FRAPCON-4			

Figure 4: FAST Website Licensing Link Location

The link "FAST License Generation" in Figure 4 above will take you to the FAST License Generator screen in Figure 5 below.



Figure 5: FAST Licensing Webpage

First select the appropriate licensing for the target machine's OS: Linux or Windows highlighted in red boxes in Figure 5. MacOS is currently not supported. There is a limit of 5 license files per website user. If you need more licenses, please contact PNNL through the website e-mail.

With the CreateLicenseRequestFile(.exe) on the target machine, execute the program as shown in Figures 6 and 7 depending upon your target machine's operating system.

	FAST	/ FRAPCON /	FRAPTRAN	
номе	TEAM	CODES	MEETINGS	PUBLICATIONS
	I	FAST License Ge	enerator	
Announcements EAST-1.0 Now Released 2019 Users Group Meeting, September 22, 2019 (Seattle), All Announcem	Linux users: Downlo FAST User Installatio Windows execut. Windows users: Download instructions in the P	on Guide. able <u>Windows FAST Licensing.z</u>	st executable and install it on your target compu <u>tip</u> e request executable and install it on your target	-
Meetings	Once you have insta		t executable on your computer, upload the gene	rated application key file.

Figure 8: FAST License Request Website File Selection

Clicking "Choose File" highlighted in Figure 8 opens a File Explorer in Windows and a File Manager in Linux. Once a license.request file is selected, its name will appear to the right of the "Choose File" Icon as seen in Figure 9 below. Do not change the name of the license.request file before uploading it. Click the "Submit" button which is also highlighted in red to create a FASTProduct.key.

FAST License Generator

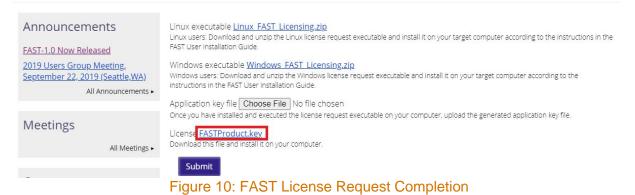

Announcements	Linux executable Linux FAST Licensing, zip Linux users: Download and unzip the Linux license request executable and install it on your target computer according to the instructions in the FAST Liser installation Guide
FAST-1.0 Now Released	PAST User Installation Guide.
2019 Users Group Meeting, September 22, 2019 (Seattle,WA) All Announcements •	Windows executable <u>Windows FAST Licensing, zip</u> Windows users: Download and unzip the Windows license request executable and install it on your target computer according to the instructions in the FAST User installation Guide.
	Application key file Choose File license.request
Meetings	Once you have installed and executed the license request executable on your computer, upload the generated application key file. Submit

Figure 9: FAST License Request Website Submission

Clicking "Submit" generates the FASTProduct.key which shows up as a download link as highlighted in Figure 10 below. Download this file and place it in the same directory as the FAST execution on your target machine. Please do not change the name of this FASTProduct.key file. Your installation of FAST-1.2.1 is now complete and ready for verification testing in Section 3.0. It may be necessary to "right-click" the FASTProduct.key and choose "Save as".

FAST License Generator

3.0 Installation Verification Suite

Now that your copy of FAST-1.2.1 has been downloaded and installed on the target machine in the target location (Section 1.0) and a FASTProduct.key (Section 2.0) has been obtained, the installation test suite can be executed. The FASTProduct.key must be in the location where you are running FAST-1.2 (where the outputs are generated). Typically, the user will run FAST-1.2.1 in a manner where the FAST-1.2.1 outputs are generated in the same location as the FAST-1.2.1 inputs by typing FAST-1.2.1 and the input file on the command line. The verification script keeps the inputs and outputs separate as a convenience to the user. The FASTProduct.key must be placed in the User_Verification_Outputs folder prior to executing the verification script.

This section will describe the test suite and the steps to execute the testing automation script. The script verification_diff.py is written in Python 3 and used with Python 3.12.2 (as of January 2020 Python 2 was frozen and will no longer be developed). The script will execute the set of supplied FAST-1.2.1 inputs and provided files with the extension ".diff" that contain the differences between the FAST-1.2.1 output files generated on your machine and the output files generated by the FAST development team.

Use of a Python version other than 3.6 to 3.12 is possible; it is up to the person performing the testing to ensure that the diff files reflect the differences in output files. This can be done by spot checking a diff file and its associated files.

File Name	Test Name	Comments
FGR_BWstudR1.in	FGR_BWstudR1	B&W Studsvik Rod 1 for predicted fission gas release.
Oxide_N05.in	Oxide_N05	N05 Case for predicted oxide thickness.
Strain_GE7.in	Strain_GE7	GE7 Case for permanent hoop strain following a power ramp.
Temperature_681-3.in	Temperature_681-3	IFA-681 Rod 3 for predicted fuel centerline temperature.
Temperature_ifa_432r3.in	Temperature_ifa_432r3	IFA-432 Rod 3 for predicted fuel centerline temperature.
Void_24i6.in	Void_24i6	24i6 case for predicted end of life rod void volume.

Tests included in the Verification Suite are listed in Table 5 below.

Table 5 – FAST Verification Suite Tests

To execute the Verification Suite first download and transfer the compressed file to the target machine. The verification_diff.py script must be updated if the FAST-1.2.1 executable is installed in a location other than that of the folder structure described in Table 4.

3.1 Expected Differences

The differences listed in this section were generated from machines which are less than 5 years old. Differences in architecture may result in round off error. The user is invited to use their professional judgement or contact PNNL via the website contact information for interpretation of larger than expected differences.

Sample difference files are included in the Installation_Verification/Sample_Difference_Files/ folder. The testing conducted at PNNL using virtual machines and physical machines showed that the verification_diff.py script only shows file names and minor rounding. The script ignores expected differences in execution dates, usernames, and computer names. When Linux and Windows outputs are compared it was found that the peak axial node in a flat power profile changed but the fuel performance values remained the same.

Please see the Sample_Difference_Files folder for text files with differences. See Appendix A for a Windows difference file listing. The following is a listing of the Debian Bookworm 12.5 differences, where some rounding occurs in the Temperature case, using Python 3:

```
*******
|FGR BWstudR1|
+++ /media/sf D Shared Folder/Debian Bookworm/FAST-
1.2.1/Installation Verification/Verification Cases/Outputs/FGR BWstudR1
 - /media/sf D Shared Folder/Debian Bookworm/FAST-
1.2.1/Installation Verification/User Verification Outputs/FGR BWstudR1
+++ line:244
-- line:244
****
#########
*******
|Oxide N05|
+++ /media/sf D Shared Folder/Debian Bookworm/FAST-
1.2.1/Installation Verification/Verification Cases/Outputs/Oxide N05
--- /media/sf_D_Shared_Folder/Debian_Bookworm/FAST-
1.2.1/Installation Verification/User Verification Outputs/Oxide N05
+++ line:346
 - line:346
*****
#########
*****
*******
|Strain GE7|
+++ /media/sf D Shared Folder/Debian Bookworm/FAST-
1.2.1/Installation Verification/Verification Cases/Outputs/Strain GE7
 -- /media/sf D Shared Folder/Debian Bookworm/FAST-
1.2.1/Installation Verification/User Verification Outputs/Strain GE7
+++ line:427
-- line:427
########
*********
        *****
*******
|Temperature_681-3|
+++ /media/sf D Shared Folder/Debian Bookworm/FAST-
1.2.1/Installation Verification/Verification Cases/Outputs/Temperature 681-3
```

--- /media/sf_D_Shared_Folder/Debian_Bookworm/FAST-1.2.1/Installation_Verification/User_Verification_Outputs/Temperature_681-3

				0		
+++ line:286						
line:286		0.1.4.	0 701			
+++ line:3758 local linear heat rating, W/m**2(btu/hr-ft**2) 3.06E+05(9.71E+04)		9.14(2.78)		rod suria	ace heat flux,
line:3715 local linear heat rating,		9.14(2.79)		rod surfa	ace heat flux,
W/m**2(btu/hr-ft**2) 3.06E+05(9.71E+04)			,			
+++ line:3840 local linear heat rating,		9.14(2.78)		rod surfa	ace heat flux,
W/m**2(btu/hr-ft**2) 3.06E+05(9.71E+04)		0.1.4.	0 700			
line:3796 local linear heat rating, W/m**2(btu/hr-ft**2) 3.06E+05(9.71E+04)		9.14(2.79)		rod suria	ace heat flux,
+++ line:3922 local linear heat rating,		9.14(2.78)		rod surfa	ace heat flux,
W/m**2(btu/hr-ft**2) 3.06E+05(9.71E+04)			,			,
line:3877 local linear heat rating,		9.14(2.79)		rod surfa	ace heat flux,
W/m**2(btu/hr-ft**2) 3.06E+05(9.71E+04)						
+++ line:9526 local linear heat rating, W/m**2(btu/hr-ft**2) 5.05E+05(1.60E+05)		15.08(4.59)		rod surfa	ace heat flux,
<pre>W/m**2(btu/hr-ft**2) 5.05E+05(1.60E+05) line:9413 local linear heat rating,</pre>		15.08(4.60)		rod surfa	ace heat flux,
W/m**2(btu/hr-ft**2) 5.05E+05(1.60E+05)		(,			,
+++ line:9527 peak linear heat rating,	kW/m(kW/ft)	15.08(4.59)			
line:9414 peak linear heat rating,		15.08(4.60)			
+++ line:9608 local linear heat rating,		15.08(4.59)		rod surfa	ace heat flux,
<pre>W/m**2(btu/hr-ft**2) 5.05E+05(1.60E+05) line:9494 local linear heat rating,</pre>		15.08(4.60)		rod surfa	ace heat flux,
W/m**2(btu/hr-ft**2) 5.05E+05(1.60E+05)		10.00(1.00)		IOG DUIIC	ice near Hun,
+++ line:9609 peak linear heat rating,		15.08(4.59)			
line:9495 peak linear heat rating,		15.08(4.60)			
+++ line:9690 local linear heat rating,		15.08(4.59)		rod surfa	ace heat flux,
W/m**2(btu/hr-ft**2) 5.05E+05(1.60E+05)		15 09 (4 60)		rod surf	ace heat flux,
line:9575 local linear heat rating, W/m**2(btu/hr-ft**2) 5.05E+05(1.60E+05)		15.08(4.60)		IOU SUIIC	ace near riux,
+++ line:9691 peak linear heat rating,		15.08(4.59)			
line:9576 peak linear heat rating,		15.08(4.60)			
+++ line:9773 peak linear heat rating,		15.08(4.59)			
line:9657 peak linear heat rating,		15.08(4.60)			
+++ line:9855 peak linear heat rating, line:9738 peak linear heat rating,		15.08(15.08(4.59) 4.60)			
+++ line:9937 peak linear heat rating,		15.08(4.59)			
line:9819 peak linear heat rating,		15.08(4.60)			
+++ line:10019 peak linear heat rating		15.08(4.59)			
line:9900 peak linear heat rating,		15.08(4.60)			
+++ line:10101 peak linear heat rating		15.08(4.59)			
line:9981 peak linear heat rating, +++ line:10183 peak linear heat rating		15.08(4.60) 4.59)			
		15.08(15.08(4.60)			
line:10062 peak linear heat rating +++ line:24358 local linear heat rating	, kW/m(kW/ft)	15.08(15.08(21.24(4.60) 6.47)		rod surf	face heat flux,
line:10062 peak linear heat rating +++ line:24358 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05)	, kW/m(kW/ft) , kW/m(kW/ft)	15.08(21.24(6.47)			
line:10062 peak linear heat rating +++ line:24358 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:24065 local linear heat rating	<pre>, kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft)</pre>	15.08(face heat flux, face heat flux,
line:10062 peak linear heat rating +++ line:24358 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:24065 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05)	<pre>, kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft)</pre>	15.08(21.24(21.24(6.47) 6.48)		rod surf	face heat flux,
line:10062 peak linear heat rating +++ line:24358 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:24065 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:24440 local linear heat rating	<pre>, kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft)</pre>	15.08(21.24(6.47)		rod surf	
line:10062 peak linear heat rating +++ line:24358 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:24065 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05)	<pre>, kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft)</pre>	15.08(21.24(21.24(6.47) 6.48)		rod surf rod surf	face heat flux,
line:10062 peak linear heat rating +++ line:24358 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:24065 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:24440 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05)	<pre>, kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft)</pre>	15.08(21.24(21.24(21.24(6.47) 6.48) 6.47) 6.48)		rod surf rod surf	face heat flux, face heat flux,
line:10062 peak linear heat rating +++ line:24358 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:24065 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:24440 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:24146 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:24522 local linear heat rating	<pre>, kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft)</pre>	15.08(21.24(21.24(21.24(6.47) 6.48) 6.47)		rod surf rod surf rod surf	face heat flux, face heat flux,
line:10062 peak linear heat rating +++ line:24358 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:24065 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:24440 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:24146 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:24522 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05)	<pre>, kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft)</pre>	15.08(21.24(21.24(21.24(21.24(21.24(21.24(6.47) 6.48) 6.47) 6.48) 6.47)		rod surf rod surf rod surf rod surf	Face heat flux, Face heat flux, Face heat flux, Face heat flux,
line:10062 peak linear heat rating +++ line:24358 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:24065 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:24440 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:24146 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:24522 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:24227 local linear heat rating	<pre>, kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft)</pre>	15.08(21.24(21.24(21.24(21.24(6.47) 6.48) 6.47) 6.48)		rod surf rod surf rod surf rod surf	face heat flux, face heat flux, face heat flux,
line:10062 peak linear heat rating +++ line:24358 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:24065 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:24440 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:24146 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:24522 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:24227 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:24227 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05)	<pre>, kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft)</pre>	15.08(21.24(21.24(21.24(21.24(21.24(21.24(21.24(6.47) 6.48) 6.47) 6.48) 6.47) 6.48) 	553.9	rod surf rod surf rod surf rod surf rod surf	face heat flux, face heat flux, face heat flux, face heat flux, face heat flux,
line:10062 peak linear heat rating +++ line:24358 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:24065 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:24440 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:24146 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:24522 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:24227 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:24227 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05)	<pre>, kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) 1.15 464.0 4</pre>	15.08(21.24(21.24(21.24(21.24(21.24(21.24(21.24(68.5 472.)	 6.47) 6.48) 6.47) 6.48) 6.47) 6.48) 	553.9	rod surf rod surf rod surf rod surf rod surf	face heat flux, face heat flux, face heat flux, face heat flux, face heat flux,
line:10062 peak linear heat rating +++ line:24358 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:24065 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:24440 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:24146 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:2452 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:24227 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:3260 2 22.3 1 0.18 -1175.0 0.1200 0.32398 563.4 294.5 line:32209 2 22.3 3 0.18	<pre>, kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) 1.15 464.0 4 0.0 0.00 1.15 464.0 4</pre>	15.08 (21.24 (21.24 (21.24 (21.24 (21.24 (21.24 (21.24 (21.24 (68.5 472.) 10.4 68.5 472.)	 6.47) 6.48) 6.47) 6.48) 6.47) 6.48) 9 2.79 		rod surf rod surf rod surf rod surf rod surf 607.6 648	Face heat flux, Face heat flux, Face heat flux, Face heat flux, Face heat flux, 8.7 0.0 -1949.8
line:10062 peak linear heat rating +++ line:24358 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:24065 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:24440 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:24146 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:24522 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:24527 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:32602 2 22.3 1 0.18 -1175.0 0.1200 0.32398 563.4 294.5	<pre>, kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) 1.15 464.0 4 0.0 0.00</pre>	15.08(21.24(21.24(21.24(21.24(21.24(21.24(21.24(21.24(68.5 472. 10.4	 6.47) 6.48) 6.47) 6.48) 6.47) 6.48) 9 2.79 9 2.79 	553.9	rod surf rod surf rod surf rod surf rod surf 607.6 648	Face heat flux, face heat flux, face heat flux, face heat flux, face heat flux, 6.7 0.0 -1949.8 6.7 0.0 -1949.8
line:10062 peak linear heat rating +++ line:24358 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:24065 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:24440 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:24146 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:24522 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:2427 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:2427 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:32602 2 22.3 1 0.18 -1175.0 0.1200 0.32398 563.4 294.5 line:32209 2 22.3 3 0.18 -1175.0 0.1200 0.32398 563.4 294.5 +++ line:32603 3 53.0 3 0.63	<pre>, kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) 1.15 464.0 4 0.0 0.00 1.15 464.0 4 0.0 0.00 2.02 464.0 4</pre>	15.08 (21.24 (21.24 (21.24 (21.24 (21.24 (21.24 (21.24 (21.24 (21.24 (68.5 472.1 10.4 68.5 472.1 10.4 71.9 479.7	 6.47) 6.48) 6.47) 6.48) 6.47) 6.48) 9 2.79 9 2.79 	553.9	rod surf rod surf rod surf rod surf rod surf 607.6 648	Face heat flux, face heat flux, face heat flux, face heat flux, face heat flux, 6.7 0.0 -1949.8 6.7 0.0 -1949.8
line:10062 peak linear heat rating +++ line:24358 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:24065 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:24440 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:24146 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:24522 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) + line:24227 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) + line:24227 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:32602 2 22.3 1 0.18 -1175.0 0.1200 0.32398 563.4 294.5 line:32209 2 22.3 3 0.18 -1175.0 0.1200 0.32398 563.4 294.5 +++ line:32603 3 53.0 3 0.63 -1093.5 0.1197 0.32462 651.7 318.1	<pre>, kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) 1.15 464.0 4 0.0 0.00 1.15 464.0 4 0.0 0.00 2.02 464.0 4 0.0 0.01</pre>	15.08(21.24(21.24(21.24(21.24(21.24(21.24(21.24(21.24(21.24(68.5 472. 10.4 71.9 479.1 11.3	 6.47) 6.48) 6.47) 6.48) 6.47) 6.48) 9 2.79 9 2.79 7 2.46 	553.9 602.6	rod surf rod surf rod surf rod surf 607.6 648 607.6 648 696.6 763	Face heat flux, Face heat flux, Face heat flux, Face heat flux, Face heat flux, 8.7 0.0 -1949.8 8.7 0.0 -1949.8 8.8 0.0 -1775.7
line:10062 peak linear heat rating +++ line:24358 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:24065 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:24440 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:24146 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:24522 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:24227 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:32602 222.3 1 0.18 -1175.0 0.1200 0.32398 563.4 294.5 +++ line:32603 3 53.0 3 0.63 -1093.5 0.1197 0.32462 651.7 318.1 line:32210 3 53.0 1 0.63	<pre>, kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) 1.15 464.0 4 0.0 0.00 1.15 464.0 4 0.0 0.00 2.02 464.0 4</pre>	15.08(21.24(21.24(21.24(21.24(21.24(21.24(21.24(21.24(68.5 472. 10.4 71.9 479. 71.9 479.	 6.47) 6.48) 6.47) 6.48) 6.47) 6.48) 9 2.79 9 2.79 7 2.46 	553.9 602.6	rod surf rod surf rod surf rod surf 607.6 648 607.6 648 696.6 763	Face heat flux, Face heat flux, Face heat flux, Face heat flux, Face heat flux, 8.7 0.0 -1949.8 8.7 0.0 -1949.8 8.8 0.0 -1775.7
line:10062 peak linear heat rating +++ line:24358 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:24065 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:24440 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:24146 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:24522 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:24527 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:32602 2 22.3 1 0.18 1175.0 0.1200 0.32398 563.4 294.5 line:32209 2 22.3 3 0.18 -1175.0 0.1200 0.32398 563.4 294.5 +++ line:32603 3 53.0 3 0.63 -1093.5 0.1197 0.32462 651.7 318.1 line:32210 3 53.0 1 0.63 -1093.5 0.1197 0.32462 651.7 318.1 +++ line:32607 7 93.3 1 1.49	<pre>, kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) 1.15 464.0 4 0.0 0.00 1.15 464.0 4 0.0 0.00 2.02 464.0 4 0.0 0.01 2.02 464.0 4 0.0 0.01 3.48 464.2 4</pre>	15.08(21.24(21.24(21.24(21.24(21.24(21.24(21.24(21.24(68.5 472.1 10.4 71.9 479.1 11.3 77.6 491.3	 6.47) 6.48) 6.47) 6.48) 6.47) 6.48) 9 2.79 9 2.79 9 2.79 7 2.46 7 2.46 	553.9 602.6 602.6	rod surf rod surf rod surf rod surf rod surf 607.6 648 607.6 648 696.6 763	Eace heat flux, Eace h
line:10062 peak linear heat rating +++ line:24358 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:24065 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:24440 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:24146 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:24522 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:24527 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:24527 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:32602 2 22.3 1 0.18 -1175.0 0.1200 0.32398 563.4 294.5 line:32209 2 22.3 3 0.18 -1093.5 0.1197 0.32462 651.7 318.1 line:32210 3 53.0 1 0.63 -1093.5 0.1197 0.32462 651.7 318.1 +++ line:32607 7 93.3 1 1.49 -944.2 0.1213 0.32533 784.6 361.7	<pre>, kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) 1.15 464.0 4 0.0 0.00 1.15 464.0 4 0.0 0.00 2.02 464.0 4 0.0 0.01 2.02 464.0 4 0.0 0.01 3.48 464.2 4 0.0 0.02</pre>	15.08 (21.24 (21.	 6.47) 6.48) 6.47) 6.48) 6.47) 6.48) 9 2.79 9 2.79 7 2.46 7 2.46 1 2.09 	553.9 602.6 602.6 666.9	rod surf rod surf rod surf rod surf 607.6 648 607.6 648 696.6 763 696.6 763 844.8 968	Face heat flux, 63.7 0.0 -1949.8 63.7 0.0 -1949.8 63.8 0.0 -1775.7 63.3 0.0 -1456.8
line:10062 peak linear heat rating +++ line:24358 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:24065 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:24440 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:24146 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:24522 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) + line:24227 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:32020 2 22.3 1 0.18 -1175.0 0.1200 0.32398 563.4 294.5 +++ line:32603 3 53.0 3 0.63 -1093.5 0.1197 0.32462 651.7 318.1 line:32210 3 53.0 1 0.63 -1093.5 0.1197 0.32462 651.7 318.1 +++ line:32607 7 93.3 1 1.49 -944.2 0.1213 0.32533 784.6 361.7 line:32214 7 93.3 3 1.49	<pre>, kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) 1.15 464.0 4 0.0 0.00 1.15 464.0 4 0.0 0.01 2.02 464.0 4 0.0 0.01 3.48 464.2 4</pre>	15.08(21.24(21.24(21.24(21.24(21.24(21.24(21.24(21.24(21.24(68.5 472. 10.4 71.9 479.1 11.3 77.6 491.1 12.9 77.6 491.1	 6.47) 6.48) 6.47) 6.48) 6.47) 6.48) 9 2.79 9 2.79 7 2.46 7 2.46 1 2.09 	553.9 602.6 602.6 666.9	rod surf rod surf rod surf rod surf 607.6 648 607.6 648 696.6 763 696.6 763 844.8 968	Face heat flux, 63.7 0.0 -1949.8 63.7 0.0 -1949.8 63.8 0.0 -1775.7 63.3 0.0 -1456.8
line:10062 peak linear heat rating +++ line:24358 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:24065 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:24440 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:24146 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:24522 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:24527 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:32602 2 22.3 1 0.18 -1175.0 0.1200 0.32398 563.4 294.5 line:32209 2 22.3 3 0.18 -1175.0 0.1200 0.32398 563.4 294.5 +++ line:32603 3 53.0 3 0.63 -1093.5 0.1197 0.32462 651.7 318.1 line:32210 3 53.0 1 0.63 -1093.5 0.1197 0.32462 651.7 318.1 +++ line:32607 7 93.3 1 1.49 -944.2 0.1213 0.32533 784.6 361.7	<pre>, kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) 1.15 464.0 4 0.0 0.00 2.02 464.0 4 0.0 0.01 2.02 464.0 4 0.0 0.01 3.48 464.2 4 0.0 0.02 3.48 464.2 4 0.0 0.02</pre>	15.08(21.24(21.24(21.24(21.24(21.24(21.24(21.24(21.24(21.24(68.5 472.1 10.4 71.9 479.1 11.3 71.9 479.1 11.3 77.6 491.1 12.9	 6.47) 6.48) 6.47) 6.48) 6.47) 6.48) 9 2.79 9 2.79 9 2.79 7 2.46 7 2.46 1 2.09 1 2.09 	553.9 602.6 602.6 666.9 666.9	rod surf rod surf rod surf rod surf 607.6 648 607.6 648 696.6 763 844.8 968	Face heat flux, Face h
line:10062 peak linear heat rating +++ line:24358 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:24065 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:24440 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:24146 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:24522 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:24527 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:32602 2 22.3 1 0.18 line:24227 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:32609 2 22.3 3 0.18 -1175.0 0.1200 0.32398 563.4 294.5 +++ line:32603 3 53.0 3 0.63 -1093.5 0.1197 0.32462 651.7 318.1 line:32210 3 53.0 1 0.63 -1093.5 0.1197 0.32462 651.7 318.1 +++ line:32607 7 93.3 1 1.49 -944.2 0.1213 0.32533 784.6 361.7 line:32214 7 93.3 3 1.49 -944.2 0.1213 0.32533 784.6 361.7 +++ line:32610 10 123.5 3 2.26	<pre>, kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) 1.15 464.0 4 0.0 0.00 1.15 464.0 4 0.0 0.00 2.02 464.0 4 0.0 0.01 2.02 464.0 4 0.0 0.01 3.48 464.2 4 0.0 0.02 3.48 464.2 4 0.0 0.02</pre>	15.08(21.24(21.24(21.24(21.24(21.24(21.24(21.24(21.24(21.24(68.5 472.1 10.4 71.9 479.1 11.3 71.6 479.1 12.9 77.6 491.1 12.9 78.8 493.1	 6.47) 6.48) 6.47) 6.48) 6.47) 6.48) 9 2.79 9 2.79 9 2.79 7 2.46 7 2.46 1 2.09 1 2.09 	553.9 602.6 602.6 666.9 666.9	rod surf rod surf rod surf rod surf 607.6 648 607.6 648 696.6 763 844.8 968	Face heat flux, Face h
line:10062 peak linear heat rating +++ line:24358 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:24065 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:24440 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:24146 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:24522 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:2427 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:2427 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:32602 2 22.3 1 0.18 -1175.0 0.1200 0.32398 563.4 294.5 +++ line:32603 3 53.0 3 0.63 -1093.5 0.1197 0.32462 651.7 318.1 line:32210 3 53.0 1 0.63 -1093.5 0.1197 0.32462 651.7 318.1 +++ line:32607 7 93.3 1 1.49 -944.2 0.1213 0.32533 784.6 361.7 line:32214 7 93.3 3 1.49 -944.2 0.1213 0.32533 784.6 361.7 +++ line:32610 10 123.5 3 2.26 -899.8 0.1206 0.32564 846.7 374.6	<pre>, kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) 1.15 464.0 4 0.0 0.00 1.15 464.0 4 0.0 0.00 2.02 464.0 4 0.0 0.01 2.02 464.0 4 0.0 0.01 3.48 464.2 4 0.0 0.02 3.48 464.2 4 0.0 0.02</pre>	15.08(21.24(21.24(21.24(21.24(21.24(21.24(21.24(21.24(68.5 472.1 10.4 68.5 472.1 10.4 71.9 479.1 11.3 71.6 491.1 12.9 78.8 493.1 14.4	 6.47) 6.48) 6.47) 6.48) 6.47) 6.48) 9 2.79 9 2.79 7 2.46 7 2.46 1 2.09 1 2.09 3 1.94 	553.9 602.6 602.6 666.9 666.9 669.3	rod surf rod surf rod surf rod surf 607.6 648 696.6 763 696.6 763 844.8 968 844.8 968	Face heat flux, Face h
line:10062 peak linear heat rating +++ line:24358 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:24065 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:2440 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:24146 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:24522 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:24527 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:32602 2 22.3 1 0.18 -1175.0 0.1200 0.32398 563.4 294.5 line:32209 2 22.3 3 0.18 -1175.0 0.1200 0.32398 563.4 294.5 +++ line:32603 3 53.0 3 0.63 -1093.5 0.1197 0.32462 651.7 318.1 line:32210 3 53.0 1 0.63 -1093.5 0.1197 0.32462 651.7 318.1 +++ line:32607 7 93.3 1 1.49 -944.2 0.1213 0.32533 784.6 361.7 +++ line:32610 10 123.5 3 2.26 -899.8 0.1206 0.32564 846.7 374.6	<pre>, kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) 1.15 464.0 4 0.0 0.00 2.02 464.0 4 0.0 0.00 2.02 464.0 4 0.0 0.01 2.02 464.0 4 0.0 0.01 3.48 464.2 4 0.0 0.02 3.48 464.2 4 0.0 0.02 3.48 464.2 4 0.0 0.02 3.76 464.3 4 0.0 0.03 3.76 464.3 4 0.0 0.03</pre>	15.08(21.24(21.24(21.24(21.24(21.24(21.24(21.24(21.24(21.24(21.24(68.5 472.1 10.4 71.9 479.1 11.3 77.6 491.1 12.9 77.6 491.2 12.9 78.8 493.1 14.4 78.8 493.1 14.4	 6.47) 6.48) 6.47) 6.48) 6.47) 6.48) 9 2.79 9 2.79 9 2.79 7 2.46 7 2.46 1 2.09 1 2.09 3 1.94 	553.9 602.6 602.6 666.9 666.9 669.3 669.3	rod surf rod surf rod surf rod surf 607.6 648 607.6 648 696.6 763 844.8 968 844.8 968 844.8 968	Face heat flux, 63.7 0.0 -1949.8 3.7 0.0 -1949.8 3.8 0.0 -1775.7 3.8 0.0 -1456.8 3.2 0.0 -1361.8
line:10062 peak linear heat rating +++ line:24358 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:24065 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:24440 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:24146 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:24522 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:24527 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:32602 2 22.3 1 0.18 line:24227 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:32602 2 22.3 1 0.18 -1175.0 0.1200 0.32398 563.4 294.5 +++ line:32603 3 53.0 3 0.63 -1093.5 0.1197 0.32462 651.7 318.1 line:32210 3 53.0 1 0.63 -1093.5 0.1197 0.32462 651.7 318.1 +++ line:32607 7 93.3 1 1.49 -944.2 0.1213 0.32533 784.6 361.7 line:32214 7 93.3 3 1.49 -944.2 0.1213 0.32533 784.6 361.7 +++ line:32610 10 123.5 3 2.26 -899.8 0.1206 0.32564 846.7 374.6 line:32217 10 123.5 1 2.26 -899.8 0.1206 0.32564 846.7 374.6 +++ line:32611 11 136.2 6 2.66	<pre>, kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) 1.15 464.0 4 0.0 0.00 1.15 464.0 4 0.0 0.00 2.02 464.0 4 0.0 0.01 2.02 464.0 4 0.0 0.01 3.48 464.2 4 0.0 0.02 3.48 464.2 4 0.0 0.02 3.76 464.3 4 0.0 0.03 3.76 464.3 4 0.0 0.03 3.76 464.3 4 0.0 0.03</pre>	15.08(21.24(21.24(21.24(21.24(21.24(21.24(21.24(21.24(68.5 472.1 10.4 71.9 479.1 11.3 71.9 479.1 11.3 77.6 491.1 12.9 77.6 491.1 12.9 77.6 491.1 12.9 78.8 493.1 14.4 78.8 493.1	 6.47) 6.48) 6.47) 6.48) 6.47) 6.48) 9 2.79 9 2.79 9 2.79 7 2.46 7 2.46 1 2.09 1 2.09 3 1.94 	553.9 602.6 602.6 666.9 666.9 669.3 669.3	rod surf rod surf rod surf rod surf 607.6 648 607.6 648 696.6 763 844.8 968 844.8 968 844.8 968	Face heat flux, 63.7 0.0 -1949.8 3.7 0.0 -1949.8 3.8 0.0 -1775.7 3.8 0.0 -1456.8 3.2 0.0 -1361.8
line:10062 peak linear heat rating +++ line:24358 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:24065 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:24440 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:24146 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:24522 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:24227 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:24227 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:32602 2 22.3 1 0.18 -1175.0 0.1200 0.32398 563.4 294.5 line:32209 2 22.3 3 0.18 -1175.0 0.1200 0.32398 563.4 294.5 +++ line:32603 3 53.0 3 0.63 -1093.5 0.1197 0.32462 651.7 318.1 line:32210 3 53.0 1 0.63 -1093.5 0.1197 0.32462 651.7 318.1 +++ line:32617 7 93.3 1 1.49 -944.2 0.1213 0.32533 784.6 361.7 line:32214 7 93.3 3 1.49 -944.2 0.1213 0.32533 784.6 361.7 line:32217 10 123.5 1 2.26 -899.8 0.1206 0.32564 846.7 374.6 line:32611 11 136.2 6 2.66 -893.4 0.1208 0.32586 903.1 393.9	<pre>, kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) 1.15 464.0 4 0.0 0.00 1.15 464.0 4 0.0 0.01 2.02 464.0 4 0.0 0.01 3.48 464.2 4 0.0 0.02 3.48 464.2 4 0.0 0.02 3.76 464.3 4 0.0 0.03 3.76 464.3 4 0.0 0.03 4.32 464.4 4 0.0 0.03</pre>	15.08(21.24(21.24(21.24(21.24(21.24(21.24(21.24(21.24(68.5 472.1 10.4 68.5 472.1 10.4 71.9 479.1 11.3 71.6 491.1 12.9 77.6 491.2 12.9 78.8 493.2 14.4 78.8 493.2 14.4 81.0 497.1 15.2	 6.47) 6.48) 6.47) 6.48) 6.47) 6.48) 9 2.79 9 2.79 7 2.46 7 2.46 1 2.09 1 2.09 3 1.94 3 1.94 7 1.84 	553.9 602.6 602.6 666.9 666.9 669.3 669.3 687.1	rod surf rod surf rod surf rod surf 607.6 648 607.6 648 696.6 763 696.6 763 844.8 968 844.8 968 874.4 1018 874.4 1018	Face heat flux,
line:10062 peak linear heat rating +++ line:24358 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:24065 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:24440 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:24146 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:2452 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:2452 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:32602 2 22.3 1 0.18 1 line:32209 2 22.3 3 0.18 -1175.0 0.1200 0.32398 563.4 294.5 +++ line:32603 3 53.0 3 0.63 -1093.5 0.1197 0.32462 651.7 318.1 line:32210 3 53.0 1 0.63 -1093.5 0.1197 0.32462 651.7 318.1 +++ line:32607 7 93.3 1 1.49 -944.2 0.1213 0.32533 784.6 361.7 line:32214 7 93.3 3 1.49 -944.2 0.1213 0.32533 784.6 361.7 +++ line:32610 10 123.5 3 2.26 -899.8 0.1206 0.32564 846.7 374.6 line:32217 10 123.5 1 2.26 -899.8 0.1206 0.32564 846.7 374.6 +++ line:32611 11 36.2 1 2.66	<pre>, kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) 1.15 464.0 4 0.0 0.00 1.15 464.0 4 0.0 0.00 2.02 464.0 4 0.0 0.01 2.02 464.0 4 0.0 0.01 3.48 464.2 4 0.0 0.02 3.76 464.3 4 0.0 0.03 3.76 464.3 4 0.0 0.03 4.32 464.4 4</pre>	15.08(21.24(21.24(21.24(21.24(21.24(21.24(21.24(21.24(68.5 472.1 10.4 68.5 472.1 10.4 71.9 479.1 11.3 71.6 491.1 12.9 77.6 491.2 12.9 78.8 493.1 14.4 78.8 493.1 14.4 81.0 497.1 15.2 81.0 497.1	 6.47) 6.48) 6.47) 6.48) 6.47) 6.48) 9 2.79 9 2.79 7 2.46 7 2.46 1 2.09 1 2.09 3 1.94 3 1.94 7 1.84 	553.9 602.6 602.6 666.9 666.9 669.3 669.3 687.1	rod surf rod surf rod surf rod surf 607.6 648 607.6 648 696.6 763 696.6 763 844.8 968 844.8 968 874.4 1018 874.4 1018	Face heat flux,
line:10062 peak linear heat rating +++ line:24358 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:24065 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:24440 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) + line:24146 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:24522 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:24527 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:32602 2 22.3 1 0.18 line:24227 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:32602 2 22.3 3 0.18 -1175.0 0.1200 0.32398 563.4 294.5 +++ line:32603 3 53.0 3 0.63 -1093.5 0.1197 0.32462 651.7 318.1 line:32210 3 53.0 1 0.63 -1093.5 0.1197 0.32462 651.7 318.1 +++ line:32607 7 93.3 1 1.49 -944.2 0.1213 0.32533 784.6 361.7 line:32214 7 93.3 3 1.49 -944.2 0.1213 0.32533 784.6 361.7 +++ line:32610 10 123.5 3 2.26 -899.8 0.1206 0.32564 846.7 374.6 line:32217 10 123.5 1 2.26 -899.8 0.1206 0.32564 846.7 374.6 +++ line:32611 11 136.2 6 2.66 -833.4 0.1218 0.32586 903.1 393.9 line:32218 11 36.2 1 2.66 -833.4 0.1218 0.32586 903.1 393.9 +++ line:32618 18 176.9 1 4.12	<pre>, kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) 1.15 464.0 4 0.0 0.00 1.15 464.0 4 0.0 0.00 2.02 464.0 4 0.0 0.01 2.02 464.0 4 0.0 0.01 3.48 464.2 4 0.0 0.02 3.48 464.2 4 0.0 0.02 3.76 464.3 4 0.0 0.03 3.76 464.3 4 0.0 0.03 4.32 464.4 4 0.0 0.03 5.57 464.7 4</pre>	15.08(21.24(21.24(21.24(21.24(21.24(21.24(21.24(21.24(21.24(68.5 472.1 10.4 71.9 479.1 11.3 77.6 491.1 12.9 77.6 491.1 12.9 77.6 491.1 12.9 77.6 491.1 12.9 78.8 493.1 14.4 78.8 493.1 14.4 81.0 497.1 15.2 81.0 497.1 15.2 86.2 507.1	 6.47) 6.48) 6.47) 6.48) 6.47) 6.48) 9 2.79 9 2.79 9 2.79 7 2.46 1 2.09 1 2.09 1 .94 3 1.94 7 1.84 	553.9 602.6 666.9 666.9 669.3 669.3 687.1 687.1	rod surf rod surf rod surf rod surf 607.6 648 607.6 648 696.6 763 844.8 968 844.8 968 874.4 1018 874.4 1018 932.8 1107	Face heat flux,
line:10062 peak linear heat rating +++ line:24358 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:24065 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:24440 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) line:24146 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:24522 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:24527 local linear heat rating W/m**2(btu/hr-ft**2) 7.12E+05(2.26E+05) +++ line:32602 2 22.3 1 0.18 -1175.0 0.1200 0.32398 563.4 294.5 line:32209 2 22.3 3 0.18 -1175.0 0.1200 0.32398 563.4 294.5 +++ line:32603 3 53.0 3 0.63 -1093.5 0.1197 0.32462 651.7 318.1 line:32210 3 53.0 1 0.63 -1093.5 0.1197 0.32462 651.7 318.1 +++ line:32607 7 93.3 1 1.49 -944.2 0.1213 0.32533 784.6 361.7 line:32214 7 93.3 3 1.49 -944.2 0.1213 0.32533 784.6 361.7 +++ line:32611 10 123.5 3 2.266 -899.8 0.1206 0.32564 846.7 374.6 +++ line:32611 11 136.2 6 2.666 -833.4 0.1218 0.32586 903.1 393.9 line:32218 11 136.2 1 2.66 -833.4 0.1218 0.32586 903.1 393.9	<pre>, kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) , kW/m(kW/ft) 1.15 464.0 4 0.0 0.00 1.15 464.0 4 0.0 0.00 2.02 464.0 4 0.0 0.01 2.02 464.0 4 0.0 0.01 3.48 464.2 4 0.0 0.02 3.48 464.2 4 0.0 0.02 3.76 464.3 4 0.0 0.03 3.76 464.3 4 0.0 0.03 4.32 464.4 4 0.0 0.03 5.57 464.7 4</pre>	15.08(21.24(21.24(21.24(21.24(21.24(21.24(21.24(21.24(21.24(68.5 472.1 10.4 71.9 479.1 11.3 77.6 491.1 12.9 77.6 491.1 12.9 77.6 491.1 12.9 77.6 491.1 12.9 78.8 493.1 14.4 78.8 493.1 14.4 81.0 497.1 15.2 81.0 497.1 15.2 86.2 507.1	 6.47) 6.48) 6.47) 6.48) 6.47) 6.48) 9 2.79 9 2.79 9 2.79 7 2.46 1 2.09 1 2.09 1 .94 3 1.94 7 1.84 	553.9 602.6 666.9 666.9 669.3 669.3 687.1 687.1	rod surf rod surf rod surf rod surf 607.6 648 607.6 648 696.6 763 844.8 968 844.8 968 874.4 1018 874.4 1018 932.8 1107	Face heat flux,

line:32225 18 176			486.2 507.6	1.56	712.9 1065.5	5 1333.0	0.0	-860.3
-665.0 0.1332 0.32644 +++ line:32625 25 232			5 18.1 491.1 516.7	1 26	715.3 1191.8	1586 1	0.0	-422.8
-460.2 0.1414 0.32707	1333.3 502.6	5 0.1 0.0	8 23.1					
line: 32232 25 232			491.1 516.7	1.26	715.3 1191.8	3 1586.1	0.0	-422.8
-460.2 0.1414 0.32707 +++ line:32633 33 295			8 23.1 495.4 524.5	0.97	699.4 1340.0	1937.1	0.0	191.7
-172.5 0.1596 0.32771	1719.1 586.1	0.1 0.1	2 29.4					
line:32240 33 295				0.97	699.4 1340.0	1937.1	0.0	191.7
-172.5 0.1596 0.32771 +++ line:32635 35 314			2 29.4 495.4 524.2	0.96	696.3 1334.5	5 1928.4	0.0	206.2
-165.7 0.1623 0.32774	1730.5 587.9	0.1 0.1	3 31.3					
line:32242 35 314 -165.7 0.1623 0.32774			495.4 524.2 3 31.3	0.96	696.3 1334.5	5 1928.4	0.0	206.2
-165.7 0.1623 0.32774 +++ line:32636 36 321			3 31.3 495.5 524.3	0.95	695.6 1335.8	1930.9	0.0	217.9
-160.2 0.1635 0.32776	1739.2 589.7	0.1 0.1	4 32.1					
line: 32243 36 321			495.5 524.3	0.95	695.6 1335.8	3 1930.9	0.0	217.9
-160.2 0.1635 0.32776 +++ line:32637 37 331			4 32.1 495.7 524.7	0.94	694.2 1340.6	5 1940.3	0.0	250.9
-144.8 0.1653 0.32779				0.91	00112 10101	2010.0	0.0	200.9
line:32244 37 331				0.94	694.2 1340.6	5 1940.3	0.0	250.9
-144.8 0.1653 0.32779 +++ line:32679 x	1765.1 594.1 Axial node	0.1 0.1	4 33.2 = 4		x			
line:32286 x	Axial node		= 1		x			
#######################################		*********				********	######	#######
########								
*****	*****	********	*****	******	**********	********	*****	******

Temperature_ifa-432r3								
+++ /media/sf_D_Shared_Folder/Debian_Bookworm/FAST-								
1.2.1/Installation_Verification/Verification_Cases/Outputs/Temperature_ifa-432r3 /media/sf D Shared Folder/Debian Bookworm/FAST-								
1.2.1/Installation_Verification/User_Verification_Outputs/Temperature_ifa-432r3								
+++ line:265 line:265								
#######################################	##################	****	##############	#######	############	****	######	#######
########								
* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	*******	*****	*****	******	******	* * * * * *	*****

Void_2416								
+++ /media/sf D Shared Folder/Debian Bookworm/FAST-								
1.2.1/Installation Verification/Verification Cases/Outputs/Void 24i6								
/media/sf_D_Shared_Folder/Debian_Bookworm/FAST-								
1.2.1/Installation_Verification/User_Verification_Outputs/Void_24i6								
+++ line:294	+++ line:204							
line:294								
line:294								
line:294 ####################################	##################	:#############	##############	#######	############	:############	######	#######

3.2 FAST-1.2.1 Code Change Requests

NQA-1-2017 is a more rigorous quality assurance program, however issues with code may arise. Please use the form in Appendix B to request changes and e-mail it to PNNL via the contact information on the FAST website.

4.0 Convenience Scripts

A convenience script that converts FRAPCON input to FAST input is included. FAST-1.2.1 performs calculations for normal operations and AOOs. FRAPTRAN initialized with FRAPCON will be used for design basis accidents such as RIAs and LOCAs. The convenience script contains preliminary conversions for standalone FRAPTRAN inputs however the FAST-1.2.1 code is only for normal operations and AOOs.

4.1 Execution of FRAPCON_to_FAST.py

The Python3 script FRAPCON_to_FAST_Inputs.py will convert FRAPCON inputs to FAST inputs. The script retains the order of the variables from the FRAPCON input in the FAST input for easier comparisons. Changes to Fortran NAMELIST block beginnings and endings are included for compliance with the latest Fortran standards. The previous files used Intel formatting which can be slightly different from the general Fortran standard. The user of the script will find indices added to arrays and comments added for each variable. Please note that the FRAPCON input file can only have one instance of each NAMELIST block to properly work.

Execution of the script is best performed in a new directory with input files containing the ending with ".in". The script will convert FRAPCON files by writing a new file with the ending _FAST.in. Executing the command python3 FRAPCON_to_FAST_Inputs.py all will convert all files in the working directory. Executing the command python3 FRAPCON_to_FAST_Inputs.py 24i6.in will only convert the file name given to 24i6_FAST.in.

4.2 FAST-1.2.1 AIG

The Microsoft Excel-based tool for generating input, developed for use with the FAST codes is FAST-1.2.1 AIG. This auto input-generator is similar to the AIG for FRAPCON and FRAPTRAN but with differences for FAST.

4.3 FRAPlot

The Microsoft Excel-based tool for plotting developed for use with the FAST codes is FRAPlot. Instructions for its use are located in Appendix C, Section C.3, in FAST-1.2.1: A Computer Code for Thermal-Mechanical Nuclear Fuel Analysis under Steady-state and Transients, PNNL-35701.

5.0 References

The following documents were utilized to develop and/or are referenced in this document:

- 10 CFR, Title 10 Code of Federal Regulations, United State Government, 2018.
- ASME NQA-1-2017, Quality Assurance Requirements for Nuclear Facility Applications, January 18, 2018.
- DOE G 414.1-4, Safety Software Guide for use with 10 CFR 830 Subpart A, Quality Assurance Requirements, and DOE O 414.1C, Quality Assurance, November 2010.
- NRC NUREG/BR-0167 Software Quality Assurance Program and Guidelines, February 1993.
- PNNL-35701, FAST-1.2.1: A Computer Code for Thermal-Mechanical Nuclear Fuel Analysis under Steady State and Transients, Revision 0, March 2024.

Appendix A – Windows Server 2019 Standard Differences

The following difference is a comparison of Windows Server 2019 Standard with files run on Windows 11. Only the file names are written to the .txt file. Rounding may occur with your setup depending upon hardware architecture.

```
*******
|FGR BWstudR1|
+++ Z:\Windows Server Standard 2019\FAST-
1.2.1\Installation Verification/Verification Cases/Outputs/FGR BWstudR1
--- Z:\Windows Server Standard 2019\FAST-1.2.1\Installation Verification/User Verification Outputs/FGR BWstudR1
#########
*******
|Oxide N05|
+++ Z:\Windows_Server_Standard_2019\FAST-1.2.1\Installation_Verification/Verification_Cases/Outputs/Oxide_N05
--- Z:\Windows_Server_Standard_2019\FAST-1.2.1\Installation_Verification/User_Verification_Outputs/Oxide_N05
#########
|Strain GE7|
+++ Z:\Windows_Server_Standard_2019\FAST-1.2.1\Installation_Verification/Verification_Cases/Outputs/Strain_GE7
--- Z:\Windows_Server_Standard_2019\FAST-1.2.1\Installation_Verification/User_Verification_Outputs/Strain_GE7
#########
*******
|Temperature 681-3|
+++ Z:\Windows_Server_Standard_2019\FAST-
1.2.1\Installation Verification/Verification Cases/Outputs/Temperature 681-3
--- Z:\Windows_Server Standard 2019\FAST-
1.2.1\Installation_Verification/User_Verification_Outputs/Temperature_681-3
                                        5.33 464.6 485.1 505.7 1.61 708.8 1039.9 1287.9
+++ line:32617 17 169.9
                                3.84
                                                                                               0.0 -933.5
                          1038.7 433.1
                                         0.0
                                               0.05
-699.3 0.1316 0.32633
                                                      17.5
--- line:32617 17 169.9
                           1 3.84
                                       5.33 464.6 485.1 505.7 1.61 708.8 1039.9 1287.9
                                                                                               0.0 -933.5
                          1038.7 433.1
                                               0.05
-699.3 0.1316 0.32633
                                          0.0
                                                      17.5
                                        5.74 464.8 486.9 509.0 1.52 715.9 1084.9 1366.6
                                                                                               0.0 -805.8
+++ line:32619 19 182.2
                           9
                                4.34
                          1099.9 450.5 0.0
                                               0.05
-639.5 0.1343 0.32652
                                                      18.5
--- line:32619 19 182.2
                                      5.74 464.8 486.9 509.0 1.52 715.9 1084.9 1366.6
                                                                                               0.0 -805.8
                           1 4.34
                          1099.9 450.5 0.0
-639.5 0.1343 0.32652
                                               0.05
                                                      18.5
                                       6.58 465.0 490.3 515.6 1.35 724.6 1167.2 1518.3
+++ line:32622 22 199.7
                           9 5.12
                                                                                               0 0
                                                                                                    -546.8
                          1247.4 485.5
-518.3 0.1388 0.32688
                                         0.0 0.06
                                                      20.0
                                       6.58 465.0 490.3 515.6 1.35 724.6 1167.2 1518.3
--- line:32622 22 199.7
                           1 5.12
                                                                                               0.0
                                                                                                    -546.8
                          1247.4 485.5 0.0 0.06
-518.3 0.1388 0.32688
                                                      20.0
                          9 5.48 6.65 465.1 490.7 516.2 1.31 721.9 1176.2 1539.2
1280.5 491.0 0.0 0.07 20.7
                                                                                                    -508.5
+++ line:32623 23 207.1
                                                                                               0.0
                          1 5.48 6.65 465.1 490.7 516.2 1.31 721.9 1176.2 1539.2
1280.5 491.0 0.0 0.07 20 7
-500.3 0.1396 0.32696
                                                                                                    -508.5
--- line:32623 23 207.1
                                                                                               0.0
-500.3 0.1396 0.32696
                                       6.68 465.4 491.1 516.7 1.26 715.3 1191.8 1586.1
                                                                                                   -422.8
+++ line:32625 25 232.5
                           9
                               6.71
                                                                                               0.0
                          1333.3 502.6
                                               0.08
-460.2 0.1414 0.32707
                                         0.1
                                                      23.1

        1
        6.71
        6.68
        465.4
        491.1
        516.7
        1.26
        715.3
        1191.8
        1586.1

        1333.3
        502.6
        0.1
        0.08
        23.1
        9
        6.87
        7.07
        465.5
        492.6
        519.7
        1.19
        718.9
        1230.2
        1655.6

--- line:32625 25 232.5
                                                                                               0 0 -422 8
-460.2 0.1414 0.32707
                                                                                               0 0 -301 8
+++ line:32626 26 235.6

        1405.3
        519.0
        0.1
        0.08
        23.4

        1
        6.87
        7.07
        465.5
        492.6
        519.7
        1.19
        718.9
        1230.2
        1655.6

-403.5 0.1431 0.32721
--- line:32626 26 235.6
                                                                                               0.0 -301.8
-403.5 0.1431 0.32721
+++ line:32633 33 295.6

        1405.3
        519.0
        0.1
        0.08
        23.4

        9
        10.00
        7.59
        466.3
        495.4
        524.5
        0.97
        699.4
        1340.0
        1937.1

                                                                                               0.0
                                                                                                    191.7
                          1719.1 586.1 0.1 0.12
-172.5 0.1596 0.32771
                                                      29 4
```

--- line:32633 33 295.6 1 10.00 7.59 466.3 495.4 524.5 0.97 699.4 1340.0 1937.1 -172.5 0.1596 0.32771 1719.1 586.1 0.1 0.12 29.4 +++ line:32637 37 331.5 6 11.94 7.55 466.8 495.7 524.7 0.94 694.2 1340.6 1940.3 -144.8 0.1653 0.32779 1765.1 594.1 0.1 0.14 33.2 --- line:32637 37 331.5 1 11.94 7.55 466.8 495.7 524.7 0.94 694.2 1340.6 1940.3 -144.8 0.1653 0.32779 1765.1 594.1 0.1 0.14 33.2 0 0 191.7 0 0 250 9 0.0 250.9 +++ line:32679 x Axial node = 4 х --- line:32679 x Axial node 1 _ х ***** ######### ******* |Temperature ifa-432r3| +++ Z:\Windows Server Standard 2019\FAST-1.2.1\Installation_Verification/Verification_Cases/Outputs/Temperature_ifa-432r3 --- Z:\Windows Server Standard 2019\FAST-1.2.1\Installation Verification/User Verification Outputs/Temperature ifa-432r3 ######### ******* |Void 24i6| +++ Z:\Windows_Server_Standard_2019\FAST-1.2.1\Installation_Verification/Verification_Cases/Outputs/Void_24i6 --- Z:\Windows_Server_Standard_2019\FAST-1.2.1\Installation_Verification/User_Verification_Outputs/Void_24i6 ***** #########

Appendix B – FAST Change Request Form

The following form can e-mailed to PNNL via the FAST website contact information to request a change or report a software deficiency.

	(select one)		No
			(Assigned by PM)
1.	RELEASED VERSION ID		
2.	REQUESTOR	PHONE/	
3.	ERROR REPORTED: 🗆 YES 🗆 NO	E-MAIL	
4.	PROJECTED START DATE:		
5.	ESTIMATED TIME FOR COMPLETION:	-	
6.	DESCRIPTION (attach continuation sheets if necessary)		

7. REASON FOR MODIFICATION (attach continuation sheets if necessary)

8. CODE PERFORMANCE IMPACTS (If applicable)

To be completed by PM					
ACTION: APPROVED DENIED	DATE RECEIVED				
ASSIGNED TO					
Approval for new modification	Date				

PNNL-35785

Pacific Northwest National Laboratory

902 Battelle Boulevard P.O. Box 999 Richland, WA 99354 1-888-375-PNNL (7665)

www.pnnl.gov | www.nrc.gov