FRAPCON-4.0: Integral Assessment

September 2015

KJ Geelhood
WG Luscher

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY
operated by
BATTELLE
for the
UNITED STATES DEPARTMENT OF ENERGY
under Contract DE-AC05-76RL01830
Printed in the United States of America
Available to DOE and DOE contractors from the
Office of Scientific and Technical Information,
P.O. Box 62, Oak Ridge, TN 37831-0062;
ph: (865) 576-8401
fax: (865) 576-5728
email: reports@adonis.osti.gov

Available to the public from the National Technical Information Service
5301 Shawnee Rd., Alexandria, VA 22312
ph: (800) 553-NTIS (6847)
email: ordersantis.gov http://www.ntis.gov/about/form.asps
Online ordering: http://www.ntis.gov

This document was printed on recycled paper.
(8/2010)

FRAPCON-4.0

Integral Assessment

KJ Geelhood
WG Luscher

September 2015

Prepared for
Division of Systems Analysis
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission

Washington DC 20555-0001
NRC Job Code V6197

Pacific Northwest National Laboratory Richland, Washington 99352

Abstract

An integral assessment has been performed for the U.S. Nuclear Regulatory Commission by Pacific Northwest National Laboratory to quantify the predictive capabilities of FRAPCON, a steady-state fuel behavior code designed to analyze fuel behavior from beginning-of-life to rod-average burnup levels of 62 gigawatt-days per metric ton of uranium and above. FRAPCON code calculations are shown to compare satisfactorily to a preselected set of experimental data with steady-state operating conditions.

This document describes the assessment of FRAPCON-4.0, which is the latest version of FRAPCON, released September 2015.

Foreword

The ability to accurately calculate the performance of light-water reactor fuel rods under high-burnup conditions is a major objective of the reactor safety research program being conducted by the U.S. Nuclear Regulatory Commission (NRC). To achieve this objective, the NRC has sponsored an extensive program of analytical computer code development. One product of this program is NRC's FRAPCON code, which provides the ability to accurately calculate the high-burnup response of light-water reactor fuel rods.

NRC also continues to sponsor both in-pile and out-of-pile experiments to benchmark and assess the analytical code capabilities. Over 100 new assessment cases were recently added to the integral assessment database, bringing the database total to 133 assessment cases. The new assessment cases use data from recent integral irradiation experiments and post irradiation examination programs which provided valuable information on modern cladding materials and high-burnup fuel behavior.

This report documents an integral assessment performed using the latest version of FRAPCON, FRAPCON-4.0, to demonstrate the code's ability to accurately calculate the performance of newer fuel designs and operating conditions.

Executive Summary

This document is Volume 2 of a two-volume series that describes the FRAPCON-4.0 code and its assessment. Volume 1 (Geelhood et al 2015) describes the FRAPCON-4.0 code along with input instructions. Volume 2 (this document) describes the integral code assessment, done by comparing the code predictions for fuel temperatures, fission gas release (FGR), rod internal void volume, fuel swelling, cladding creep/growth, cladding corrosion, and hoop strain to data from integral irradiation experiments and post-irradiation examination programs.
The cases used for code assessment were selected based on the following criteria:

- Well-characterized design and operational data were provided.
- The reported results spanned ranges of interest for both design and operating parameters.

Thus, the fuel rod cases were selected to represent both boiling-water reactor (BWR) and pressurizedwater reactor (PWR) fuel types, with pellet-to-cladding gap sizes within, above, and below the normal range for power reactor rods. The fill gas is pure helium in most cases, but cases are included for which helium-xenon fill gas mixtures were used to assess the gap conductance model. The linear heat generation rates at beginning-of-life (BOL) range up to $60 \mathrm{~kW} / \mathrm{m}$ ($18 \mathrm{~kW} / \mathrm{ft}$), and during end-of-life (EOL) power ramps, they range up to $47 \mathrm{~kW} / \mathrm{m}$ ($14 \mathrm{~kW} / \mathrm{ft}$). The rod-average fuel burnups range up to 99 gigawatt-days per metric ton of uranium (GWd/MTU), but only up to $76 \mathrm{GWd} / \mathrm{MTU}$ for power-ramp cases. However, the code is only considered validated to rod-average burnup of $62 \mathrm{GWd} / \mathrm{MTU}$. The EOL FGR ranges from less than 1 percent to greater than 50 percent of the produced quantity.

The primary code assessment database (used also for benchmarking the thermal and FGR models) consists of 137 well-characterized fuel rods. These include 45 test rods that experienced EOL power ramps (used for FGR and cladding hoop strain) and 92 "steady-state" cases including uranium dioxide $\left(\mathrm{UO}_{2}\right)$, mixed oxide (MOX) fuel, and urania-gadolinia $\left(\mathrm{UO}_{2}-\mathrm{Gd}_{2} \mathrm{O}_{3}\right)$ Halden rods used for fuel temperatures and $\mathrm{UO}_{2}, \mathrm{MOX}$, and $\mathrm{UO}_{2}-\mathrm{Gd}_{2} \mathrm{O}_{3}$ rods used for FGR .

Five rods from the primary set were used to assess FRAPCON-4.0 predictions of EOL void volume. The cases selected include full-length power reactor rods and shorter test reactor rods. A mix of test reactor and power reactor rods was also used to assess the fuel volume change due to densification and swelling.

The FRAPCON-4.0 model for cladding waterside oxidation was evaluated against BWR Zircaloy-2 and PWR Zircaloy-4, ZIRLO, and M5 rod data.

The FRAPCON-4.0 predictions of cladding hoop strain were assessed against 27 BWR and PWR rods that were power ramped in various test reactors.

The following conclusions about FRAPCON-4.0 were made as a result of this assessment:
Thermal: Comparisons were made for $\mathrm{BOL} \mathrm{UO}_{2}$ temperature measurements and $\mathrm{UO}_{2}, \mathrm{MOX}$, and $\mathrm{UO}_{2}-$ $\mathrm{Gd}_{2} \mathrm{O}_{3}$ temperature measurements as a function of burnup. Overall, FRAPCON-4.0 gave reasonable predictions of fuel centerline temperature for fuel rods with $\mathrm{UO}_{2}, \mathrm{MOX}$, and $\mathrm{UO}_{2}-\mathrm{Gd}_{2} \mathrm{O}_{3}$ fuel (standard deviation of less than 5 percent relative).

Fission Gas Release: Comparisons were made for the UO_{2} and MOX FGR measurements for rods with widely varying power levels and burnups. Overall, FRAPCON-4.0 gave reasonable predictions (within 5 percent FGR absolute) of fission gas release for fuel rods with UO_{2} and MOX fuel.

Internal Void Volume: Comparisons were made to data from two commercial reactor and three test reactor fuel rods. The code predicted the two commercial rods well but overpredicted the BR-3 test rod data by approximately 20 percent (relative) on average.

Cladding Corrosion: Comparisons were made to data from two commercial BWR rods with Zircaloy-2 cladding, two commercial PWR rods with Zircaloy-4 cladding, two commercial PWR rods with ZIRLO cladding, and one commercial PWR rod with M5 cladding. The oxide corrosion predictions were very good and tend to bracket the data.

Cladding Hoop Strain: The original hoop strain assessment cases that were available up to a burnup of around $45 \mathrm{GWd} / \mathrm{MTU}$ demonstrated that, on average, FRAPCON-4.0 slightly overpredicts cladding hoop strain by 0.1 percent strain. FRAPCON-4.0 overpredicted all the short hold times cases. Despite this overprediction, FRAPCON-4.0 provides reasonable hoop strain predictions up to $62 \mathrm{GWd} / \mathrm{MTU}$.

Acronyms and Abbreviations

${ }^{\circ} \mathrm{C}$	degrees Celsius
ADU	ammonium diuranate
ANO-2	Arkansas Nuclear One-Unit 2
ANS	American Nuclear Society
AOO	anticipated operational occurrence
atm	atmosphere
ATR	Advanced Test Reactor
AUC	ammonium uranyl carbonate
B\&W	Babcock and Wilcox
BN	Belgonucleaire
BNFL	British Nuclear Fuels, Ltd.
BOL	beginning of life
BWR	boiling-water reactor
cm	centimeter(s)
cm^{3}	cubic centimeter(s)
crud	Chalk River unidentified deposit (generic term for various residues deposited on fuel rod surfaces, originally coined by Atomic Energy of Canada, Ltd. to describe deposits observed on fuel from the test reactor at Chalk River)
EOL	end of life
FGR	fission gas release
g	gram(s)
Gd	gadolinium
$\mathrm{Gd}_{2} \mathrm{O}_{3}$	gadolinia
GNF	Global Nuclear Fuel
GWd/MTM	gigawatt-days per metric ton of metal
GWd/MTU	gigawatt-days per metric ton of uranium
HBEP	High Burnup Effects Program
HBWR	heavy boiling water reactor
HUHB	Halden Ultra High Burnup
K	Kelvin
kW	kilowatt(s)
KWU	Kraftwerk Union
LHGR	linear heat generation rate
LOCA	loss-of-coolant accident
LWR	light-water reactor
m	meter(s)

MIMAS	micronized master blend
mm	millimeter(s)
MOX	mixed oxide, (U, Pu) O_{2}
MPa	megapascal(s)
$\mathrm{MWd} / \mathrm{kgM}$	megawatt-days per kilogram of metal
$\mathrm{MWd} / \mathrm{kgU}$	megawatt-days per kilogram of uranium
$\mathrm{MWd} / \mathrm{MTU}$	megawatt-days per metric ton of uranium
NRC	U.S. Nuclear Regulatory Commission
PCI	pellet/cladding interaction
PCMI	pellet/cladding mechanical interaction
PIE	post-irradiation examination
PNNL	Pacific Northwest National Laboratory
Pu	plutonium
PuO	plutonium dioxide
PWR	pressurized-water reactor
SBR	short binderless route
SCC	stress corrosion cracking
SCIP	Studsvik Cladding Integrity Project
SPND	self-powered neutron detectors
TC	thermocouple
TD	theoretical density
UO	uranium dioxide
UO	
$\mathrm{WG}_{2}-\mathrm{Gd}_{2} \mathrm{O}_{3}$	urania-gadolinia
$\mu \mathrm{m}$	weapons-grade
	micrometer(s)

Contents

Abstract iii
Foreword V
Executive Summary vii
Acronyms and Abbreviations ix
1.0 Introduction 1.1
2.0 Assessment Data Description 2.1
2.1 Description of the Steady-State Cases. 2.3
2.2 Description of the Power-Ramp Cases 2.9
3.0 Thermal Behavior Assessment 3.1
3.1 BOL Fuel Center Temperature Predictions 3.1
3.1.1 $\mathrm{UO}_{2} \mathrm{BOL}$ Center Temperature Predictions 3.1
3.2 Assessment of Temperature Predictions as a Function of Burnup. 3.2
3.2.1 UO_{2} Center Temperature Predictions as a Function of Burnup 3.2
3.2.2 MOX Center Temperature Predictions as a Function of Burnup 3.14
3.2.3 $\mathrm{UO}_{2}-\mathrm{Gd}_{2} \mathrm{O}_{3}$ Center Temperature Predictions as a Function of Burnup 3.24
4.0 Fission Gas Release Assessment 4.1
4.1 Assessment of Steady-State FGR Predictions 4.1
4.1.1 UO_{2} Steady-State FGR Predictions 4.1
4.1.2 MOX Steady-State FGR Predictions. 4.4
4.1.3 $\mathrm{UO}_{2}-\mathrm{Gd}_{2} \mathrm{O}_{3}$ Steady-State FGR Predictions 4.7
4.2 Assessment of Power-Ramped FGR Predictions 4.7
4.2.1 UO_{2} Power-Ramped FGR Predictions 4.7
4.2.2 MOX Power-Ramped FGR Predictions 4.10
5.0 Internal Rod Void Volume Assessment 5.1
5.1 Fuel Rod Void Volume 5.1
6.0 Cladding Corrosion Assessment 6.1
6.1 BWR Cladding Corrosion. 6.1
6.1.1 Zircaloy-2 Corrosion 6.1
6.2 PWR Cladding Corrosion 6.2
6.2.1 Zircaloy-4 Corrosion 6.2
6.2.2 ZIRLO Corrosion 6.3
6.2.3 M5 Corrosion 6.5
7.0 Cladding Hoop Strain During Power Ramps 7.1
7.1 Assessment Cases 7.1
7.2 Comparisons vs. Ramp Terminal Level 7.2
7.3 Comparisons vs. Burnup 7.3
8.0 Conclusions 8.1
9.0 References 9.1
Appendix A - Input Files for FRAPCON-3.4 Assessment Cases A. 1

Figures

Figure 2.1. Rod-Average LHGR vs. Rod-Average Burnup for Temperature Assessment Cases 2.2
Figure 2.2. Rod-Average LHGR vs. Rod-Average Burnup for Fission Gas Release Assessment Cases 2.2
Figure 2.3. Rod-Average LHGR vs. Rod-Average Burnup for Hoop Strain Assessment Cases 2.3
Figure 3.1. Measured and Predicted Centerline Temperature for the First Ramp to Power for 13 Assessment Cases 3.2
Figure 3.2. Measured and Predicted Centerline Temperature for the UO_{2} Assessment Cases throughout Life 3.3
Figure 3.3. Predicted Minus Measured Divided by Measured Centerline Temperature for the UO_{2} Assessment Cases as a Function of Burnup 3.4
Figure 3.4. Measured and Predicted Centerline Temperature for IFA-432r1 UO 2 Lower Thermocouple 3.5
Figure 3.5. Measured and Predicted Centerline Temperature for IFA-432r3 UO 2 Lower Thermocouple 3.6
Figure 3.6. Measured and Predicted Centerline Temperature for IFA-513r1 UO 2 3.7
Figure 3.7. Measured and Predicted Centerline Temperature for IFA-513r6 UO_{2} 3.8
Figure 3.8. Measured and Predicted Rod-Average Centerline Temperature for IFA-562r18 UO 2 3.9
Figure 3.9. Measured and Predicted Centerline Temperature for IFA-597r8 3.10
Figure 3.10. Measured and Predicted Centerline Temperature for IFA-515.10rA1 UO 3.11
Figure 3.11. Measured and Predicted Centerline Temperature for IFA-515.10rB1 UO 3.11
Figure 3.12. Measured and Predicted Centerline Temperature for IFA-681rl UO 2 3.12
Figure 3.13. Measured and predicted centerline temperature for IFA-681r5 UO_{2} 3.12
Figure 3.14. Measured and Predicted Centerline Temperature for IFA-677.1r2 UO_{2} 3.13
Figure 3.15. Measured and Predicted Centerline Temperature for IFA-558r6 UO 3.14
Figure 3.16. Measured and Predicted Centerline Temperature for the MOX Assessment Cases throughout Life. 3.15
Figure 3.17. Predicted Minus Measured Divided by Measured Centerline Temperature for the MOX Assessment Cases as a Function of Burnup 3.16
Figure 3.18. Measured and Predicted Centerline Temperature for IFA-629-1 Rod 1 MOX 3.17
Figure 3.19. Measured and Predicted Centerline Temperature for IFA-629-1 Rod 2 3.17
Figure 3.20. Measured and Predicted Centerline Temperature for IFA-610.2 MOX 3.18
Figure 3.21. Measured and Predicted Centerline Temperature for IFA-610.4 MOX 3.18
Figure 3.22. Measured and Predicted Centerline Temperature for IFA-648.1 Rod 1 MOX 3.19
Figure 3.23. Measured and Predicted Centerline Temperature for IFA-648.1 Rod 2 MOX 3.19
Figure 3.24. Measured and Predicted Centerline Temperature for IFA-629.3 Rod 5 MOX 3.20
Figure 3.25. Measured and Predicted Centerline Temperature for IFA-629.3 Rod 6 MOX 3.20
Figure 3.26. Measured and Predicted Centerline Temperature for IFA-606 Phase 2 MOX 3.21
Figure 3.27. Measured and Predicted Centerline Temperature for IFA-633-1 Rod 6 MOX 3.21
Figure 3.28. Measured and Predicted Centerline Temperature for IFA-597-4, -5, -6, -7 Rod 10 MOX 3.22
Figure 3.29. Measured and Predicted Centerline Temperature for IFA-597-4, -5, -6, -7 Rod 11 MOX 3.22
Figure 3.30. Measured and Predicted Centerline Temperature for IFA-651-1 Rod 1 MOX 3.23
Figure 3.31. Measured and Predicted Centerline Temperature for IFA-651-1 Rod 3 MOX 3.23
Figure 3.32. Measured and Predicted Centerline Temperature for IFA-651-1 Rod 6 MOX 3.24
Figure 3.33. Measured and Predicted Centerline Temperature for the $\mathrm{UO}_{2}-\mathrm{Gd}_{2} \mathrm{O}_{3}$ Assessment Cases throughout Life 3.25
Figure 3.34. Predicted Minus Measured Divided by Measured Centerline Temperature for the $\mathrm{UO}_{2}-$ $\mathrm{Gd}_{2} \mathrm{O}_{3}$ Assessment Cases as a Function of Burnup 3.26
Figure 3.35. Measured and Predicted Centerline Temperature for IFA-515.10 Rod A1 $\left(\mathrm{UO}_{2}\right)$ 3.27
Figure 3.36. Measured and Predicted Centerline Temperature for IFA-515.10 Rod B1 $\left(\mathrm{UO}_{2}\right)$ 3.28
Figure 3.37. Measured and Predicted Centerline Temperature for IFA-636r2 3.29
Figure 3.38. Measured and predicted centerline temperature for IFA-636r4 $\left(\mathrm{UO}_{2}-8 \% \mathrm{Gd}_{2} \mathrm{O}_{3}\right)$ 3.30
Figure 3.39. Measured and Predicted Centerline Temperature for IFA-681rl $\left(\mathrm{UO}_{2}\right)$ 3.31
Figure 3.40. Measured and Predicted Centerline Temperature for IFA-681r2 3.31
Figure 3.41. Measured and predicted centerline temperature for IFA-681r3 3.32
Figure 3.42. Measured and Predicted Centerline Temperature for IFA-681r4 3.32
Figure 3.43. Measured and Predicted Centerline Temperature for IFA-681r5 (UO_{2}) 3.33
Figure 3.44. Measured and Predicted Centerline Temperature for IFA-681r6 3.33
Figure 4.1. Comparison of FRAPCON-4.0 Predictions to Measured FGR Data for the UO_{2} Steady-State Assessment Cases 4.2
Figure 4.2. Predicted Minus Measured FGR Versus Rod-Average Burnup for the UO_{2} Steady-State Assessment Cases 4.3
Figure 4.3. Comparison of FRAPCON-4.0 Predictions to Measured FGR Data for the MOX Steady-State Assessment Cases 4.5
Figure 4.4. Predicted Minus Measured FGR Versus Rod-Average Burnup for the MOX Steady-State Assessment Cases 4.5
Figure 4.5. Comparison of FRAPCON-4.0 Predictions to Measured FGR Data for the UO_{2} Power- Ramped Assessment Cases 4.8
Figure 4.6. Predicted Minus Measured FGR Versus Rod-Average Burnup for the UO_{2} Power-Ramped Assessment Cases 4.9
Figure 4.7. Comparison of FRAPCON-4.0 Predictions to Measured FGR Data for the MOX Power- Ramped Assessment Cases 4.11
Figure 4.8. Predicted Minus Measured FGR Versus Rod-Average Burnup for the MOX Power-Ramped Assessment Cases 4.11
Figure 6.1. Measured and Predicted Corrosion Layer Thickness as a Function of Axial Position for Oconee 5-cycle PWR Zircaloy-4 Rod 15309, $49.5 \mathrm{GWd} / \mathrm{MTU}$ (rod average) 6.2
Figure 6.2. Measured and Predicted Corrosion Layer Thickness as a Function of Axial Position for ANO-
25 -cycle PWR Zircaloy-4 Rod TSQ002, $53 \mathrm{GWd} / \mathrm{MTU}$ (rod average) 6.3
Figure 6.3. Measured and Predicted Corrosion Layer Thickness as a Function of Axial Position for Gravelines 5-Cycle PWR ZIRLO Rod A06, 65.9 GWd/MTU (rod average) 6.4
Figure 6.4. Measured and Predicted Corrosion Layer Thickness as a Function of Axial Position for Gravelines 5-Cycle PWR ZIRLO Rod A12, 66.4 GWd/MTU (rod average) 6.4
Figure 6.5. Measured and Predicted Corrosion Layer Thickness as a Function of Axial Position for Gravelines 5-Cycle PWR M5 Rod N05, 68.1 GWd/MTU (rod average) 6.5

Figure 7.1. Measured and Predicted Rod-Average Permanent Hoop Strain for First Half of the
Assessment Database.. 7.1

Figure 7.3. Predicted Minus Measured Permanent Hoop Strain as a Function of Ramp Terminal Power
Level .. 7.3
Figure 7.4 Predicted Minus Measured Permanent Hoop Strain as a Function of Burnup 7.3

Tables

Table 2.1. Steady-State Fuel Rod Data Cases Used for FRAPCON-4.0 Integral Assessment 2.4
Table 2.2. Power-Ramped Fuel Rod Data Cases Used for FRAPCON-4.0 Integral Assessment 2.10
Table 4.1. Steady-State UO_{2} FGR Assessment Cases 4.4
Table 4.2. Steady-State MOX FGR Assessment Cases 4.6
Table 4.3. Steady-State $\mathrm{UO}_{2}-\mathrm{Gd}_{2} \mathrm{O}_{3}$ FGR Assessment Cases 4.7
Table 4.4. Power-Ramped UO_{2} FGR Assessment Cases 4.10
Table 4.5. Power-Ramped MOX FGR Assessment Cases 4.12
Table 5.1. Measured and Calculated Void Volume for Five High-Burnup Fuel Rods 5.1
Table 6.1. Measured and Calculated Oxidation for Two High-Burnup BWR Fuel Rods 6.2

1.0 Introduction

This report is Volume 2 of a two-volume series that describes the FRAPCON-4.0 code and its assessment. Volume 1 (Geelhood and Luscher 2014) describes the FRAPCON-4.0 code. Volume 2 (this document) describes the assessment of the integral performance of FRAPCON-4.0.

This report provides the results of the assessment of the integral code predictions to measured data for fuel temperatures, fission gas release (FGR), internal void volume, cladding deformation, oxidation, and hydriding. The benchmark datasets are described in Section 2.0. Appendix A describes each set of benchmark data and gives the code input for each data comparison. The benchmark data are drawn from a wide range of burnup levels and operating conditions that are relevant to commercial operations. Experimental fuel rods with linear heat generation rates (LHGRs) at or near the maxima for commercial fuel operations were selected because the U.S. Nuclear Regulatory Commission (NRC) licenses fuel to the most limiting rod in the core. Not all the data selected are at limiting conditions. Some of the cases involve commercial fuel rods that operated at normal commercial operating conditions, which are significantly less than the limiting conditions. Also, it is noted that most of the thermal and FGR benchmark cases are drawn from experimental programs that involved numerous fuel rods, of which only a few were selected as benchmark cases. This was either because the rods in a given group were all irradiated under similar conditions and had similar FGR or because only rods with design parameters and operating conditions similar to current commercial practice were selected.

The integral code assessments include comparison to fuel temperature data in Section 3.0 and FGR data in Section 4.0. Comparisons of code predictions to internal void volume, cladding corrosion and hydriding, and hoop strain data are given in Sections 5.0, 6.0, and 7.0 respectively. A summary and conclusions are found in Section 8.0.

2.0 Assessment Data Description

A total of 137 benchmark cases (fuel rods) that have post-irradiation examination (PIE) were selected for the integral assessment of the FRAPCON-4.0 code. These include 92 fuel rods with steady-state power operation covering a wide range of burnup and 45 fuel rods with steady-state irradiations followed by an end-of-life (EOL) power ramp. The purpose of the code assessment was to assess the code against a limited set of well-qualified data that span the range of limiting operational conditions for commercial light-water reactors (LWRs) to verify that the code adequately predicts the integral data. The integral data of interest were fuel temperatures, FGR, corrosion, void volumes, and cladding deformation. The cases in this relatively limited group were selected using criteria regarding the completeness and the quality of the rod performance data, as follows:

- The cases should all provide pre-irradiation characterization with well-qualified fuel rod powers, and some data should include PIE data of interest (e.g., FGR, cladding dimensional changes).
- Cases for temperature assessment should provide well-qualified fuel centerline temperature data as a function of time or burnup to verify fuel temperature predictions.
- Cases ranging from low to high fuel burnup, as well as low to high (limiting) LHGR, should be provided to cover the operating ranges for LWR operation for each fuel performance issue of interest (e.g., fuel temperature, FGR, deformation).
- Cases should provide cladding oxidation, hydriding, and deformation under prototypic pressurizedwater reactor (PWR) and boiling-water reactor (BWR) conditions.
- Cases should demonstrate the effects (FGR and cladding deformation) of normal operational transients, and overpower transients including anticipated operational occurrences (AOOs) at low and high burnup.

The selected cases fulfill the above criteria, and they provide a mix of well-qualified test reactor data and less qualified (fuel rod power uncertainties are generally greater) commercial power-reactor rod data.

Figures 2.1, 2.2, and 2.3 show the rod-average LHGRs as a function of rod-average burnup (from full power histories of all the rods) for the rods in the temperature, FGR, and hoop strain assessment databases, respectively. These figures demonstrate the range of burnup and LHGRs to which the FRAPCON-4.0 predictions have been qualified for each of these integral code predictions. For the code prediction of cladding corrosion, the predictions are a function of time, power level, and coolant temperature. FRAPCON-4.0 has been qualified to predict cladding corrosion of Zircaloy-2 under BWR conditions beyond a rod-average burnup of 62 gigawatt-days per metric ton of uranium ($\mathrm{GWd} / \mathrm{MTU}$), and Zircaloy-4, ZIRLO, and M5 under PWR conditions beyond a rod-average burnup of $70 \mathrm{GWd} / \mathrm{MTU}$ for 12 foot cores. The outlet temperature of 14 foot reactor cores may be higher than has been assessed for FRAPCON-4.0, and the corrosion predictions at these temperatures have not been assessed.

Figure 2.1. Rod-Average LHGR vs. Rod-Average Burnup for Temperature Assessment Cases

Figure 2.2. Rod-Average LHGR vs. Rod-Average Burnup for Fission Gas Release Assessment Cases

Figure 2.3. Rod-Average LHGR vs. Rod-Average Burnup for Hoop Strain Assessment Cases

2.1 Description of the Steady-State Cases

The steady-state assessment cases are listed in Table 2.1, and the EOL burnup and fuel type are given for each case. This table presents the steady-state fuel behavior phenomena that are assessed in this report and indicates which cases are used for that assessment. An " X " in a table cell indicates that the corresponding data comparison was performed for a particular case to assess code predictions.

Detailed information and FRAPCON-4.0 input files for each case are found in Appendix A.

Table 2.1. Steady-State Fuel Rod Data Cases Used for FRAPCON-4.0 Integral Assessment

Reactor	Reference	Rod	Fuel Type	Rod-Average Burnup, GWd/MTU	Thermal vs. Burnup	BOL Thermal	FGR	Void Volume	Corrosion
Halden HBWR	Lanning 1986	IFA-432r1	UO_{2}	45	X	X			
		IFA-432r2	UO_{2}	30		X			
		IFA-432r3	UO_{2}	45	X	X			
Halden HBWR	Bradley et al. 1981	IFA-513r1	UO_{2}	12	X	X			
		IFA-513r6	UO_{2}	12	X	X			
Halden HBWR	Rø and Rossiter 2005	IFA-633r1	UO_{2}	40		X			
		IFA-633r3	UO_{2}	40		X			
		IFA-633r5	UO_{2}	40		X			
Halden HBWR	Thérache 2005; Jošek 2008	IFA-677.1r2	UO_{2}	32	X	X			
		IFA-677.1r3	UO_{2}	6		X			
		IFA-677.1r4	UO_{2}	6		X			
		IFA-677.1r6	UO_{2}	7		X			
Halden HBWR	Wiesnack 1992	IFA-562r18	UO_{2}	76	X				
Halden HBWR	Matsson and Turnbull 1998	IFA-597r8	UO_{2}	71	X		X		
Halden HBWR	Tverberg and Amaya 2001	IFA-515.10rA1	UO_{2}	80	X				
		IFA-515.10rA2	$\mathrm{UO}_{2}-\mathrm{Gd}_{2} \mathrm{O}_{3}$	80	X				
		IFA-515.10rB1	UO_{2}	80	X				
		IFA-515.10rB2	$\mathrm{UO}_{2}-\mathrm{Gd}_{2} \mathrm{O}_{3}$	80	X				
Halden HBWR	Klecha 2006	IFA-681r1	UO_{2}	33	X	X			
		IFA-681r2	$\mathrm{UO}_{2}-\mathrm{Gd}_{2} \mathrm{O}_{3}$	23	X				
		IFA-681r3	$\mathrm{UO}_{2}-\mathrm{Gd}_{2} \mathrm{O}_{3}$	12	X				
		IFA-681r4	$\mathrm{UO}_{2}-\mathrm{Gd}_{2} \mathrm{O}_{3}$	22	X				
		IFA-681r5	UO_{2}	32	X				
		IFA-681r6	$\mathrm{UO}_{2}-\mathrm{Gd}_{2} \mathrm{O}_{3}$	13	X				

Table 2.1. Continued

Reactor	Reference	Rod	Fuel Type	Rod-Average Burnup, GWd/MTU	Thermal vs. Burnup	BOL Thermal	FGR	Void Volume	Corrosion
Halden HBWR	Turnbull and White 2002	IFA-558r6	UO_{2}	41	X				
Halden HBWR	White 1999	IFA-629-1r1	MOX	33	X				
		IFA-629-1r2	MOX	$\begin{gathered} 29 \text { (FGR) } \\ 40 \text { (Thermal) } \end{gathered}$	X		X		
Halden HBWR	Beguin 1999;	IFA-610.2	MOX	56	X				
	Fujii and Claudel 2001	IFA-610.4	MOX	57	X				
Halden HBWR	Claudel and Huet 2001	IFA-648.1r1	MOX	62	X				
		IFA-648.1r2	MOX	62	X				
Halden HBWR	Petiprez 2002	IFA-629.3r5	MOX	72	X		X		
		IFA-629.3r6	MOX	68	X		X		
Halden HBWR	Mertens et al. 1998; Mertens and Lippens 2001	IFA-606 Phase 2	MOX	49	X		X		
Halden HBWR	Tverberg et al. 2005	IFA-636r2	$\mathrm{UO}_{2}-\mathrm{Gd}_{2} \mathrm{O}_{3}$	25	X				
		IFA-636r4	$\mathrm{UO}_{2}-\mathrm{Gd}_{2} \mathrm{O}_{3}$	25	X				
BR-3 PWR	Balfour 1982;	24 i 6	UO_{2}	60.1			X	X	
	Balfour et al. 1982	3618	UO_{2}	61.5			X	X	
		111 i 5	UO_{2}	48.6			X	X	
		28 i 6	UO_{2}	53.3			X		
		30 i 8	UO_{2}	57.85			X		
DR-3 PWR	Bagger et al. 1978	m2-2c	UO_{2}	43.75			X		
		pa29-4	UO_{2}	47.39			X		
BR-3 PWR	Lanning et al. 1987	HBEP BNFL5-DH	UO_{2}	42			X		
BR-3 PWR	Barner et al. 1990	HBEP BNFL-DE	UO_{2}	33.9			X		

Table 2.1. Continued

Reactor	Reference	Rod	Fuel Type	Rod-Average Burnup, GWd/MTU	Thermal vs. Burnup	BOL Thermal	FGR	Void Volume	Corrosion
NRX PWR	De Meulemeester et al. 1973	EPL-4	UO_{2}	10.4			X		
NRX PWR	Notley et al. 1967; Notley and MacEwan 1965	CBR	UO_{2}	2.7			X		
		CBY	UO_{2}	2.65			X		
		LFF	UO_{2}	3.29			X		
		CBP	UO_{2}	2.61			X		
EL-3 PWR	Janvier et al. 1967	4110-ae2	UO_{2}	6.2			X		
		4110-be2	UO_{2}	6.6			X		
Zorita PWR	Balfour et al. 1982	332	UO_{2}	56.8			X		
Halden HBWR	Chantoin et al. 1997	FUMEX 6f	UO_{2}	55.45			X		
		FUMEX 6s	UO_{2}	55.45			X		
Halden HBWR	Turnbull 2001	IFA429DH	UO_{2}	98.9			X		
ANO-2 PWR	Smith et al. 1994	TSQ002	UO_{2}	53.2			X	X	X
Oconee PWR	Newman 1986	15309	UO_{2}	50			X	X	X
Halden HBWR	Blair and Wright 2004	IFA-651.1r1	MOX	22.41	X		X		
		IFA-651.1r3	MOX	21.73	X		X		
		IFA-651.1r6	MOX	20.27	X		X		
ATR	Morris et al. 2000, 2001, 2005; Hodge et al. 2002, 2003	PII C2 P5	MOX	21			X		
		PIII C3 P6	MOX	30			X		
		PIII C10 P13	MOX	30			X		
		PIV C4 P7	MOX	40			X		
		PIV C5 P8	MOX	50			X		
		PIV C6 P9	MOX	50			X		
		PIV C12 P15	MOX	50			X		

Table 2.1. Continued

Reactor	Reference	Rod	Fuel Type	Rod-Average Burnup, GWd/MTU	Thermal vs. Burnup	BOL Thermal	FGR	Void Volume	Corrosion
Gravelines-4 PWR	Beguin 1999; Fujii and Claudel 2001; Claudel and Huet 2001; Petiprez 2002	N06	MOX	48			X		
		N12	MOX	57			X		
		P16	MOX	53			X		
Halden HBWR	Wright 2004	IFA 633.1r6	MOX	32	X		X		
Beznau-1	Cook et al. 2003, 2004	M504 H8	MOX	37.5			X		
		M504 I2	MOX	43			X		
		M504 K9	MOX	42.5			X		
		M504 M9	MOX	44.2			X		
Beznau-1	Boulanger et al. 2004	M308 Segment 2	MOX	57.5			X		
Halden HBWR	Koike 2004	IFA-597.4/.5/.6/.7r10	MOX	35.7	X		X		
		IFA-597.4/.5/.6/.7r11	MOX	36.8	X		X		
Fugen HBWR	Ozawa 2004	E09 Rods Inner	MOX	29.6			X		
		E09 Rods Intermediate	MOX	39.3			X		
		E09 Rods Outer	MOX	42			X		
Monticello BWR	Baumgartner 1984	MTB99 Rod A1	UO_{2}	45					X
TVO-1 BWR	Barner et al. 1990	HBEP H8/36-6	UO_{2}	51.4					X
Vandellos PWR	CSN, ENUSA 2002	A06	UO_{2}	68					X
		A12	UO_{2}	68					X
Vandellos PWR	Segura et al. 2002	N05	UO_{2}	70					X
BR-3/BR-2	Hoffmann and Kraus 1984, Manley et al. 1989, Reindl el al. 1989	GAIN Rod 301	$\mathrm{UO}_{2}-\mathrm{Gd}_{2} \mathrm{O}_{3}$	38.8			X		
		GAIN Rod 302	$\mathrm{UO}_{2}-\mathrm{Gd}_{2} \mathrm{O}_{3}$	37.79			X		
		GAIN Rod 701	$\mathrm{UO}_{2}-\mathrm{Gd}_{2} \mathrm{O}_{3}$	38.9			X		
		GAIN Rod 702	$\mathrm{UO}_{2}-\mathrm{Gd}_{2} \mathrm{O}_{3}$	38.9			X		

Table 2.1. Continued

Reactor		Reference	Rod	Fuel Type	Rod-Average Burnup, GWd/MTU	Thermal vs. Burnup	BOL Thermal	FGR	Void Volume	Corrosion
ATR	=	Advanced Test Reactor								
BOL	=	beginning of life								
HBWR	=	heavy boiling water reactor								
MOX	=	mixed oxide								
UO_{2}	=	uranium dioxide								
$\mathrm{UO}_{2}-\mathrm{Gd}_{2} \mathrm{O}_{3}$	$=$	urania-gadolinia								

2.2 Description of the Power-Ramp Cases

The power-ramp assessment cases are listed in Table 2.2, and the EOL burnup, fuel type, ramp terminal power level, and hold time are given for each case. This table presents the power-ramp fuel behavior phenomena that are assessed in this report and indicates which cases are used for that assessment. An "X" in a table cell indicates that the corresponding data comparison was performed for a particular case to assess code predictions.

Detailed information and FRAPCON-4.0 input files for each case is found in Appendix A.

Table 2.2. Power-Ramped Fuel Rod Data Cases Used for FRAPCON-4.0 Integral Assessment

Base Irradiation/Ramp Testing	Reference	Rod	Fuel Type	Rod-Average Burnup, GWd/MTU	Ramp Terminal Level, kW/m	Ramp Hold Time	FGR	Hoop Strain
Obringheim/Petten	Barner et al. 1990	HBEP D200	UO_{2}	25	45.3	2.4 days	X	
		HBEP D226	UO_{2}	44	45.0	2.6 days	X	
Obringheim/Petten	Djurle 1985	PK1/1	UO_{2}	35.4	37.2	12 hr		X
		PK1/3	UO_{2}	35.2	42.6	12 hr		X
		PK2/1	UO_{2}	45.2	36.8	12 hr		X
		PK2/3	UO_{2}	44.6	44.0	12 hr		X
		PK2-S	UO_{2}	43.4	44.0	12 hr		X
		PK4/1	UO_{2}	33.7	34.3	12 hr		X
		PK4/2	UO_{2}	33.8	39.2	12 hr		X
		PK6/1	UO_{2}	36.7	43.7	1 hr		X
		PK6/2	UO_{2}	36.8	35.7	12 hr	X	X
		PK6/3	UO_{2}	36.5	43.3	12 hr	X	
		PK6/S	UO_{2}	35.9	41.0	12 hr	X	
Studsvik/Studsvik	Mogard et al. 1979; Lysell and Birath 1979	Inter-Ramp Rod 16	UO_{2}	21	43.8	24 hr	X	X
		Inter-Ramp Rod 18	UO_{2}	18	37.79	24 hr	X	X
Halden/DR-2	Knudson et al. 1983	RISØ F14-6	UO_{2}	27	28.7	3 days	X	
		RISØ F7-3	UO_{2}	35	30.2	17 hr	X	
		RISO F9-3	UO_{2}	33	29.7	30 hr	X	
Quad Cities 1 / DR3	Chantoin et al. 1997	ge2	UO_{2}	41.9	41.9	38 hr	X	X
		ge4	UO_{2}	24.0	24.0	34 hr	X	X
		ge6	UO_{2}	42.3	38.1	5 days	X	X
		ge7	UO_{2}	41	35.5	4 hr	X	X
ANO-1/Studsvik	Wesley et al. 1994	BW stud R1	UO_{2}	62.3	22.1	12 hr	X	X
		BW stud R3	UO_{2}	62.1	24.7	12 hr	X	X

Table 2.2. Continued

Base Irradiation/Ramp Testing	Reference	Rod	$\begin{aligned} & \text { Fuel } \\ & \text { Type } \end{aligned}$	Rod-Average Burnup, GWd/MTU	$\begin{gathered} \text { Ramp } \\ \text { Terminal } \\ \text { Level, } \mathrm{kW} / \mathrm{m} \end{gathered}$	Ramp Hold Time	FGR	Hoop Strain
Biblis A/DR3	Chantoin et al. 1997	RISØ AN1	UO_{2}	41.3	40.3	3 days	X	X
		RISØ AN8	UO_{2}	40.3	30.1	12 hr	X	X
Gravelines-5/Siloe	Struzik 2004	regate	UO_{2}	50.2	38.5	1.5 hr	X	
Beznau-1/Petten	White et al. 2001; Cook et al. 2000, 2003, 2004	M501 HR-1	MOX	37	38.1	12 hr	X	
		M501 HR-2	MOX	37	35.7	12 hr	X	
		M501 HR-3	MOX	37	46.2	12 hr	X	
		M501 HR-4	MOX	36	47.0	12 hr	X	
		M501 MR-1	MOX	34	38.1	12 hr	X	
		M501 MR-2	MOX	34	41.9	12 hr	X	
		M501 MR-3	MOX	34	40.5	12 hr	X	
		M501 MR-4	MOX	33	41.7	20 min	X	
Leibstadt/Studsvik	Kallstrom 2005	KKL-1	UO_{2}	63	42.5	40 min		X
		KKL-2	UO_{2}	67	41	30 s		X
		KKL-3	UO_{2}	56	52	12 hr		X
Ringhals/Studsvik		KKL-4	UO_{2}	40	45	5 s		X
		M5-H1	UO_{2}	67	40	5 s		X
Oskarshamn/Studsvik		M5-H2	UO_{2}	68	40	12 hr		X
Vandellos/Studsvik		O2	UO_{2}	55	40	30 s		X
		Z-2	UO_{2}	76	40	6 hr		X
		Z-3	UO_{2}	76	40	$<1 \mathrm{~s}^{*}$		X
		Z-4	UO_{2}	76	38	6 hr		X

* Rod failed during ramp to power

3.0 Thermal Behavior Assessment

Thermal predictions are important for calculating initial fuel stored energy, which is used as input to loss-of-coolant accident (LOCA) analyses. The fuel temperatures are also used to calculate FGRs and EOL rod pressures and to verify no fuel melting. In general, PWR LOCA and fuel melting analyses are calculated with FRAPCON-4.0 to be more limiting at burnups between 25 and $35 \mathrm{GWd} / \mathrm{MTU}$, while the same analyses for BWRs are generally more limiting at burnups between 15 and $25 \mathrm{GWd} / \mathrm{MTU}$.

Comparisons of predicted and measured fuel center temperatures from instrumented Halden reactor test assemblies have been used to evaluate the code's ability to predict BOL temperatures and through-life temperature histories (i.e., rod power vs. burnup). The BOL and through-life temperature comparisons are separated because they have different biases and uncertainties (based on standard deviation) in the code thermal predictions. The through-life temperature history comparisons will be used to bound the uncertainties on PWR and BWR LOCA initialization and fuel melting analyses. The BOL temperature database includes not only rods with helium-filled gaps, but also rods with xenon and xenon-helium filled gaps and rods with pellet/cladding gap sizes both larger and smaller than typically used in commercial fuel designs. These variations in gap size and fill gas indicate that the code can properly account for the thermal resistance across the fuel cladding gap as a function of gap size and gas composition and is not just tuned to provide good results for typical LWR commercial fuel designs.

The comparisons of measured and predicted through-life fuel center temperature histories were done with two goals in mind. The first was to determine if the code properly accounts for the fuel thermal conductivity degradation with burnup. The second goal was to determine if the code properly predicts the effect of thermal feedback on fuel temperature caused by gas release and consequent contamination of the initial helium fill gas with lower-conductivity fission gas.

The BOL and through-life code-data comparisons are discussed separately in the following sections.

3.1 BOL Fuel Center Temperature Predictions

The BOL fuel centerline temperature predictions are assessed against centerline temperature measurements taken during the first ramp to power. This power ramp occurs during the first 1 to 2 days of operation. Because of this, the initial fuel rod dimensions apply and there is no time for phenomena such as FGR, fuel densification and swelling, cladding creep, or cladding corrosion.

3.1.1 $\mathrm{UO}_{2} \mathrm{BOL}$ Center Temperature Predictions

FRAPCON-4.0 was assessed against BOL temperature measurements taken during the first ramp to power. Thirteen rods are used to assess the performance of FRAPCON at BOL: IFA-432 rod 1, IFA-432 $\operatorname{rod} 2$, IFA-432 $\operatorname{rod} 3$, IFA-5 $13 \operatorname{rod} 1$, IFA-513 $\operatorname{rod} 6$, IFA-681 rod 1, IFA-633 rod 1, IFA-633 rod 3, IFA$633 \operatorname{rod} 5$, IFA-677.1 rod 2, IFA-677.1 $\operatorname{rod} 3$, IFA-677.1 rod 4, and IFA-677.1 rod 6. Figure 3.1 shows the predicted vs. measured temperature for the BOL ramp up to power for the 13 assessment cases. This figure shows that FRAPCON-4.0 predicts these centerline temperatures within a standard error of
 +0.03 percent). A standard error of 4.6 percent is reasonable given the uncertainty in the thermocouple
data and the calculated rod power. The beginning of life fuel temperature assessment is an improvement over the FRAPCON-3.4 predictions due to the incorporation of a new fuel relocation model in FRAPCON-4.0.

-	IFA-432r1	\square	IFA-432r2	-	IFA-432r3	-	IFA-513r1
*	IFA513r6	\bullet	IFA-681r1	+	IFA-633r1	-	IFA-633r3
-	IFA-633r5		IFA-677.1r2		IFA-677.1r3		IFA-677.1r4
\times	IFA-677.1r6		Meas=Pred	-	upper 2-sigma		lower 2-sigma

Figure 3.1. Measured and Predicted Centerline Temperature for the First Ramp to Power for 13 Assessment Cases

3.2 Assessment of Temperature Predictions as a Function of Burnup

3.2.1 UO_{2} Center Temperature Predictions as a Function of Burnup

The assessment of FRAPCON-4.0 UO_{2} temperature predictions was performed using the same cases that were used for the BOL assessment, with the following differences.

1. IFA-432 rod 2 has been removed as an assessment of FRAPCON as a function of burnup, as the test is not prototypic of current fuel designs due to its large gap, and a small overprediction in FGR can result in a large temperature overprediction.
2. IFA-633 rods 1,3 , and 5 and IFA- 677.1 rods 3,4 , and 6 originally only had BOL temperature reported and only recently had measured temperature as a function of burnup reported. Therefore, these rods are not included in this assessment.
3. IFA-562 rod 18, IFA-597 rod 8, IFA-515.10 rods A1 and B1, IFA-681 rod 5, and IFA-558 rod 6 have been added in addition to the BOL assessment cases.

The following figures show measured and predicted fuel centerline temperatures from rods with centerline temperature measurements. Individual rod predictions may demonstrate a systematic error (bias) that may be due to thermocouple decalibration or a systematic error in the power history or axial power shape (power at thermocouple location) provided due to decalibration in or with the neutron detectors. However, when all the comparisons are examined, it is found that there is no overall systematic error (bias) in the prediction of UO_{2} fuel temperature throughout life, as can be seen in Figure 3.2. For all the cases, a standard error of 4.7 percent on the centerline temperature was calculated. These data are also shown in terms of relative bias in Figure 3.3 as a function of burnup. There appears to be an underpredictive bias of 4.0% on average early in life between 2 to $16 \mathrm{GWd} / \mathrm{MTU}$. However, there appears to be no systematic bias in the predictions with increasing burnup.

Figure 3.2. Measured and Predicted Centerline Temperature for the UO_{2} Assessment Cases throughout Life

- IFA-432r1	*IFA-432r3	\bullet IFA-513r1	+ IFA-513r6	-IFA-562r18	- IFA-597r8
IFA-515.10rA1	IFA515.10rB1	IFA-681r1	\times IFA-681r5	*IFA-677.1r2	-IFA-558r6

Figure 3.3. Predicted Minus Measured Divided by Measured Centerline Temperature for the UO_{2} Assessment Cases as a Function of Burnup

Figure 3.4 shows the measured and predicted centerline temperature for IFA-432r1. This figure contains data from the lower thermocouple. This rod also contained an upper thermocouple, but it failed after 150 days. The comparisons to the upper thermocouple data are similar to the lower thermocouple. This figure shows excellent agreement between the FRAPCON-4.0 predictions and the data.

Figure 3.4. Measured and Predicted Centerline Temperature for IFA-432r1 UO 2 Lower Thermocouple (burnup $=45 \mathrm{GWd} / \mathrm{MTU}$, as-fabricated radial gap $=114 \mu \mathrm{~m}$)

Figure 3.5 shows the measured and predicted centerline temperature for IFA-432r3. This figure contains data from the lower thermocouple. This rod also contained an upper thermocouple, but it failed after 550 days. The comparisons to the upper thermocouple data are similar to the lower thermocouple. This figure shows excellent agreement between the FRAPCON-4.0 predictions and the data at BOL, and an overprediction of about 100 K (7% relative) at EOL. This overprediction may be due to FRAPCON-4.0 overpredicting the gas release, leading to higher predicted temperatures. As noted earlier, overprediction of gas release leads to lower gap conductivity and results in higher fuel temperature predictions. It should also be noted that some of the helium fill and fission gases were found to have leaked out of these IFA432 rods based on rod puncture data (i.e., the leak was theorized to have occurred around the thermocouple penetrations through the end caps).

Figure 3.5. Measured and Predicted Centerline Temperature for IFA-432r3 UO ${ }_{2}$ Lower Thermocouple (burnup $=45 \mathrm{GWd} / \mathrm{MTU}$, as-fabricated radial gap $=38 \mu \mathrm{~m}$)

Figure 3.6 shows the measured and predicted centerline temperature for IFA-513r1. This figure contains data from the upper and lower thermocouples. This figure shows reasonable agreement between the FRAPCON-4.0 predictions and the data.

(a)
(b)

Figure 3.6. Measured and Predicted Centerline Temperature for IFA-513r1 UO 2 Upper Thermocouple (a) and Lower Thermocouple (b) (burnup $=10 \mathrm{GWd} / \mathrm{MTU}$, as-fabricated radial gap $=108 \mu \mathrm{~m}$)

Figure 3.7 shows the measured and predicted centerline temperature for IFA-513r6. This figure contains data from the upper and lower thermocouples. This figure shows reasonable agreement between the FRAPCON-4.0 predictions and the data.

——Upper TC Data ——FRAPCON-4.0 (Upper TC)

——Lower TC Data ——FRAPCON-4.0 (Lower TC)
(b)

Figure 3.7. Measured and Predicted Centerline Temperature for IFA-513r6 UO ${ }_{2}$ Upper Thermocouple (a) and Lower Thermocouple (b) (burnup=10 GWd/MTU, as-fabricated radial gap=108 $\mu \mathrm{m}$)

Figure 3.8 shows the measured and predicted centerline temperature for IFA-562r18. This figure contains rod axial-averaged temperature data from the expansion thermometer. This figure shows excellent agreement between the FRAPCON-4.0 predictions and the data.

Figure 3.8. Measured and Predicted Rod-Average Centerline Temperature for IFA-562r18 UO ${ }_{2}$ (burnup $=76 \mathrm{GWd} / \mathrm{MTU}$, as-fabricated radial gap $=50 \mu \mathrm{~m}$)

Figure 3.9 shows the measured and predicted centerline temperature for IFA-597r8. This rod was refabricated from a commercial rod that was irradiated to $68 \mathrm{GWd} / \mathrm{MTU}$. This figure contains upper thermocouple data. This figure shows reasonable agreement between the FRAPCON-4.0 predictions and the data ($\pm 75 \mathrm{~K}, 6 \%$ relative).

Figure 3.9. Measured and Predicted Centerline Temperature for IFA-597r8 (starting burnup = $68 \mathrm{GWd} / \mathrm{MTU}$, ending burnup= $71 \mathrm{GWd} / \mathrm{MTU}$, as-fabricated radial gap $=105 \mu \mathrm{~m}$)

Figures 3.10 and 3.11 show the measured and predicted centerline temperature for IFA-515.10 rods A1 and B1. These figures contain upper thermocouple data. These figures show reasonable agreement between the FRAPCON-4.0 predictions and the data ($\pm 50 \mathrm{~K}, 6 \%$ relative).

Figure 3.10. Measured and Predicted Centerline Temperature for IFA-515.10rA1 UO ${ }_{2}$ (burnup = $80 \mathrm{GWd} / \mathrm{MTU}$, as-fabricated radial gap $=25 \mu \mathrm{~m}$)

Figure 3.11. Measured and Predicted Centerline Temperature for IFA-515.10rB1 UO ${ }_{2}$ (burnup = $80 \mathrm{GWd} / \mathrm{MTU}$, as-fabricated radial gap $=25 \mu \mathrm{~m}$)

Figures 3.12 and 3.13 show the measured and predicted centerline temperature for IFA-681 rods 1 and 5. These figures contain upper thermocouple data (rod 1) and expansion thermometer data (rod 5). These figures show reasonable agreement between the FRAPCON-4.0 predictions and the data ($\pm 30 \mathrm{~K}, 2 \%$ relative).

Figure 3.12. Measured and Predicted Centerline Temperature for IFA-681r1 UO ${ }_{2}$ (burnup $=$ $33 \mathrm{GWd} / \mathrm{MTU}$, as-fabricated radial gap $=85 \mu \mathrm{~m}$)

Figure 3.13. Measured and predicted centerline temperature for IFA-681r5 UO_{2} (burnup = $32 \mathrm{GWd} / \mathrm{MTU}$, as-fabricated radial gap $=85 \mu \mathrm{~m}$)

Figure 3.14 shows the measured and predicted centerline temperature for IFA-677 rod 2. This figure contains upper thermocouple data. This figure shows significant underprediction of the FRAPCON-4.0 predictions relative to the data at BOL of up to 150 K (11% relative). However, by 300 days, the underprediction has been reduced to a more reasonable level of 75 K (5% relative) or less. This rod
(Figure 3.14) had similar LHGR and burnup and the same gap size as IFA-681 rod 5 (Figure 3.13) but significantly higher fuel centerline temperatures ($\sim 130^{\circ} \mathrm{C}, 10 \%$ relative) at low burnups.

Figure 3.14. Measured and Predicted Centerline Temperature for IFA-677.1r2 UO_{2} (burnup $=$ $32 \mathrm{GWd} / \mathrm{MTU}$, as-fabricated radial gap $=85 \mu \mathrm{~m}$)

Figure 3.15 shows the measured and predicted centerline temperature for IFA-558 rod 6. This figure contains upper thermocouple data. This figure shows reasonable agreement between the FRAPCON-4.0 predictions and the data ($\pm 50-75 \mathrm{~K}, 4-6 \%$ relative), except between 25.5 and $28 \mathrm{GWd} / \mathrm{MTU}$ burnup, where temperatures are underpredicted by up to 120 K (10% relative) but then start to provide good agreement at $29 \mathrm{GWd} / \mathrm{MTU}$.

Figure 3.15. Measured and Predicted Centerline Temperature for IFA-558r6 UO ${ }_{2}$ (burnup = $41 \mathrm{GWd} / \mathrm{MTU}$, as-fabricated radial gap $=95 \mu \mathrm{~m}$)

This section demonstrates that FRAPCON-4.0 continues to provide a best-estimate prediction of centerline temperature for UO_{2} rods to within a standard error of 4.7 percent for recent experimental data (see Figure 3.2). The largest deviation was for IFA-677 rod 2, which shows a 150 K (11% relative) underprediction at BOL that decreases to less than 75 K (6% relative) by 300 days. All the IFA-677 rods were also slightly underpredicted in the BOL temperature section, perhaps demonstrating a bias in this data, particularly compared with rods of similar power, burnup levels, and gap size that demonstrate better agreement with the code.

It is noted that in some of these cases the temperatures are predicted well throughout life, while in other cases there is a deviation with time, and in others there is a consistent bias throughout life. The cases with a deviation with time are likely due to a small difference in FGR predictions that affect the calculated centerline temperature or a drift in neutron detectors with time that affects measured rod powers. In some cases, the neutron detectors are recalibrated between reactor cycles such that at a given burnup or time the predicted and measured temperatures begin to agree better or deviate. The cases with a constant bias throughout life are likely due to a bias in the predictions, the reported rod power, or the measured temperature.

3.2.2 MOX Center Temperature Predictions as a Function of Burnup

FRAPCON-4.0 predictions have been benchmarked against centerline temperatures taken from eight Halden tests with instrumented fuel assemblies containing 15 MOX fuel rods. The results of these comparisons are provided in this section.

The following figures show measured and predicted fuel centerline temperatures from rods with centerline temperature measurements. Individual rod predictions may demonstrate a systematic error
(bias) that may be due to thermocouple decalibration or a systematic error in the power history or axial power shape (power at thermocouple location) provided due to decalibration in or with the neutron detectors. However, when all the comparisons are examined, no overall systematic error (bias) is found in the prediction of MOX fuel temperature, as can be seen in Figure 3.16. For all the cases, a standard error of 4.8 percent on the centerline temperature was calculated. These data are also shown in terms of relative bias in Figure 3.17 as a function of burnup. There appears to be no systematic bias in the predictions with increasing burnup.

Figure 3.16. Measured and Predicted Centerline Temperature for the MOX Assessment Cases throughout Life

Figure 3.17. Predicted Minus Measured Divided by Measured Centerline Temperature for the MOX Assessment Cases as a Function of Burnup

Figures 3.18 and 3.19 show the measured and predicted centerline temperatures for IFA-629-1 rods 1 and 2. These figures show good agreement between the FRAPCON-4.0 predictions and the data. The slight offset during parts of the irradiation could be due to power or thermocouple calibration changes at the end of each cycle.

Figure 3.18. Measured and Predicted Centerline Temperature for IFA-629-1 Rod 1 MOX (starting burnup $=27 \mathrm{GWd} / \mathrm{MTU}$, ending burnup=33 GWd/MTU, as-fabricated radial gap $=84 \mu \mathrm{~m}$)

Figure 3.19. Measured and Predicted Centerline Temperature for IFA-629-1 Rod 2 (starting burnup = $29 \mathrm{GWd} / \mathrm{MTU}$, ending burnup $=40 \mathrm{GWd} / \mathrm{MTU}$, as-fabricated radial gap $=84 \mu \mathrm{~m}$)

Figures 3.20 and 3.21 show the measured and predicted centerline temperature for IFA-610.2 and IFA610.4. These figures show excellent agreement between the FRAPCON-4.0 predictions and the data.

Figure 3.20. Measured and Predicted Centerline Temperature for IFA-610.2 MOX (starting burnup = $55 \mathrm{GWd} / \mathrm{MTU}$, ending burnup $=56 \mathrm{GWd} / \mathrm{MTU}$, as-fabricated radial gap $=84 \mu \mathrm{~m}$)

Figure 3.21. Measured and Predicted Centerline Temperature for IFA-610.4 MOX (starting burnup $=56$, ending burnup $=57 \mathrm{GWd} / \mathrm{MTU}$, as-fabricated radial gap $=84 \mu \mathrm{~m}$)

Figures 3.22 and 3.23 show the measured and predicted centerline temperature for IFA-648.1 rods 1 and 2. These figures show excellent agreement between the FRAPCON-4.0 predictions and the data.

Figure 3.22. Measured and Predicted Centerline Temperature for IFA-648.1 Rod 1 MOX (starting burnup $=55 \mathrm{GWd} / \mathrm{MTU}$, ending burnup $=62 \mathrm{GWd} / \mathrm{MTU}$, as-fabricated radial gap $=$ $84 \mu \mathrm{~m}$)

Figure 3.23. Measured and Predicted Centerline Temperature for IFA-648.1 Rod 2 MOX (starting burnup $=55 \mathrm{GWd} / \mathrm{MTU}$, ending burnup $=62 \mathrm{GWd} / \mathrm{MTU}$, as-fabricated radial gap = $84 \mu \mathrm{~m})$

Figures 3.24 and 3.25 show the measured and predicted centerline temperature for IFA-629.3 rods 5 and 6. These figures show excellent agreement between the FRAPCON-4.0 predictions and the data.

Figure 3.24. Measured and Predicted Centerline Temperature for IFA-629.3 Rod 5 MOX (starting burnup $=62 \mathrm{GWd} / \mathrm{MTU}$, ending burnup $=72 \mathrm{GWd} / \mathrm{MTU}$, as-fabricated radial gap $=$ $84 \mu \mathrm{~m}$)

Figure 3.25. Measured and Predicted Centerline Temperature for IFA-629.3 Rod 6 MOX (starting burnup $=62 \mathrm{GWd} / \mathrm{MTU}$, ending burnup $=68 \mathrm{GWd} / \mathrm{MTU}$, as-fabricated radial gap $=$ $84 \mu \mathrm{~m})$

Figure 3.26 shows the measured and predicted centerline temperature for IFA-606 Phase 2. This figure shows reasonable agreement between the FRAPCON-4.0 predictions and the data (within $\pm 75 \mathrm{~K}, 7 \%$ relative).

Figure 3.26. Measured and Predicted Centerline Temperature for IFA-606 Phase 2 MOX (starting burnup $=49 \mathrm{GWd} / \mathrm{MTU}$, as-fabricated radial gap $=94 \mu \mathrm{~m}$)

Figure 3.27 shows the measured and predicted centerline temperature for IFA-633-1 rod 6. This figure shows reasonable agreement between the FRAPCON-4.0 predictions and the data (within $\pm 75 \mathrm{~K}, 5 \%$ relative) until about $26 \mathrm{GWd} / \mathrm{MTU}$, when FRAPCON-4.0 overpredicts the data by about 125 to 150 K (13% relative). This may be because FRAPCON-4.0 overpredicts the FGR (measured FGR=6 percent, predicted=13 percent) for this rod, which will lead to increased fuel temperatures.

Figure 3.27. Measured and Predicted Centerline Temperature for IFA-633-1 Rod 6 MOX (burnup = $32 \mathrm{GWd} / \mathrm{MTU}$, as-fabricated radial gap $=104 \mu \mathrm{~m}$)

Figures 3.28 and 3.29 show the measured and predicted centerline temperature for IFA-597-4, $-5,-6,-7$ rods 10 and 11. These figures show excellent agreement between the FRAPCON-4.0 predictions and the data up to $25 \mathrm{GWd} / \mathrm{MTU}$, when the code begins to overpredict the data by up to 100 K (7% relative).

Figure 3.28. Measured and Predicted Centerline Temperature for IFA-597-4, -5, -6, -7 Rod 10 MOX (burnup $=36 \mathrm{GWd} / \mathrm{MTU}$ as-fabricated radial gap $=95 \mu \mathrm{~m}$)

——Data ——FRAPCON-4.0

Figure 3.29. Measured and Predicted Centerline Temperature for IFA-597-4, -5, -6, -7 Rod 11 MOX (burnup $=37 \mathrm{GWd} /$ MTU as-fabricated radial gap $=95 \mu \mathrm{~m}$)

Figures 3.30, 3.31, and 3.32 show the measured and predicted centerline temperature for IFA-651-1 rods 1,3 , and 6 . These figures show excellent agreement between the FRAPCON-4.0 predictions and the data from rods 1 and 6 that were instrumented with centerline thermocouple, and reasonable agreement $(\pm 50 \mathrm{~K}$, 5% relative) with the data from rod 3 that was instrumented with an expansion thermometer.

Figure 3.30. Measured and Predicted Centerline Temperature for IFA-651-1 Rod 1 MOX (burnup = $22 \mathrm{GWd} / \mathrm{MTU}$ as-fabricated radial gap $=79 \mu \mathrm{~m}$)

Figure 3.31. Measured and Predicted Centerline Temperature for IFA-651-1 Rod 3 MOX (burnup = $22 \mathrm{GWd} / \mathrm{MTU}$ as-fabricated radial gap $=79 \mu \mathrm{~m}$)

Figure 3.32. Measured and Predicted Centerline Temperature for IFA-651-1 Rod 6 MOX (burnup $=$ $20 \mathrm{GWd} / \mathrm{MTU}$ as-fabricated radial gap $=81 \mu \mathrm{~m}$)

This section demonstrates that FRAPCON-4.0 continues to provide a best-estimate prediction of centerline temperature for MOX rods to within a standard error of 4.8 percent. The largest deviation was for 633-1 rod 6 , which shows up to a 150 K (13% relative) overprediction at higher burnup. This may be due to overpredicting the FGR for this rod.

3.2.3 $\mathrm{UO}_{2}-\mathrm{Gd}_{2} \mathrm{O}_{3}$ Center Temperature Predictions as a Function of Burnup

The adjustment for gadolinia in the thermal conductivity model has been assessed against centerline temperature predictions from three instrumented fuel assemblies irradiated at the Halden reactor. The results of these comparisons are provided in this section.

The following figures show measured and predicted fuel centerline temperatures from rods with centerline temperature measurements. Individual rod predictions may demonstrate a systematic error (bias) that may be due to thermocouple decalibration or a systematic error in the power history or axial power shape (power at thermocouple location) provided due to decalibration in or with the neutron detectors with time. However, when all the comparisons are examined, no overall systematic error (bias) is found in the prediction of $\mathrm{UO}_{2}-\mathrm{Gd}_{2} \mathrm{O}_{3}$ temperature throughout life, as can be seen in Figure 3.33. For all the cases, a standard error of 4.8 percent on the centerline temperature was calculated. These data are also shown in terms of relative bias in Figure 3.34 as a function of burnup. It can be seen that there appears to be no systematic bias in the predictions with increasing burnup.

\bullet	IFA-515.10rA2	\square	IFA-515.10rB2	IFA-636r2
\times	IFA-636r4	$*$	IFA-681r2	\bullet
+	IFA-681r4	\bullet	IFA-681r6	
-	IFA-681r3			
	Upper 2-sigma		Lower 2-sigma	

Figure 3.33. Measured and Predicted Centerline Temperature for the $\mathrm{UO}_{2}-\mathrm{Gd}_{2} \mathrm{O}_{3}$ Assessment Cases throughout Life

Figure 3.34. Predicted Minus Measured Divided by Measured Centerline Temperature for the $\mathrm{UO}_{2^{-}}$ $\mathrm{Gd}_{2} \mathrm{O}_{3}$ Assessment Cases as a Function of Burnup

Figures 3.35 and 3.36 show the measured and predicted centerline temperature for IFA-515.10. Rods A1 and B 1 are UO_{2} rods and rods A 2 and B 2 are $\mathrm{UO}_{2}-\mathrm{Gd}_{2} \mathrm{O}_{3}$ rods with depleted gadolinium (Gd) that did not contain any ${ }^{155} \mathrm{Gd}$ or ${ }^{157} \mathrm{Gd}$. There are two factors that influence the centerline temperature for $\mathrm{UO}_{2}-\mathrm{Gd}_{2} \mathrm{O}_{3}$ rods relative to UO_{2} rods: 1) degradation in thermal conductivity due to Gd addition and 2) radial power profile due to the neutron absorption of ${ }^{155} \mathrm{Gd}$ and ${ }^{157} \mathrm{Gd}$. These rods were meant to show the difference only due to the thermal conductivity degradation from gadolinia $\left(\mathrm{Gd}_{2} \mathrm{O}_{3}\right)$, not due to the difference in radial power profile. A modified version of FRAPCON-4.0 that uses the UO_{2} radial power profile model (TUBRNP) for $\mathrm{UO}_{2}-\mathrm{Gd}_{2} \mathrm{O}_{3}$ rods (A2 and B2) was used to perform these calculations. These figures show that FRAPCON-4.0 predicts the centerline temperatures for $\mathrm{UO}_{2}-\mathrm{Gd}_{2} \mathrm{O}_{3}$ rods as well as for UO_{2} rods. In these figures, the vertical line denotes where the thermocouple failed. Although data was reported after this point, it is not valid.

(a)
——A2 Data ——FRAPCON-4.0 ——TC Failed
(b)

Figure 3.35. Measured and Predicted Centerline Temperature for IFA-515.10 Rod A1 $\left(\mathrm{UO}_{2}\right)(a)$, and for IFA-515.10 rod A2 $\left(\mathrm{UO}_{2}-8 \% \mathrm{Gd}_{2} \mathrm{O}_{3}\right)$ (b) (burnup $=80 \mathrm{GWd} / \mathrm{MTU}$, as-fabricated radial gap $=25 \mu \mathrm{~m}$)

(a)
(b)

Figure 3.36. Measured and Predicted Centerline Temperature for IFA-515.10 Rod B1 $\left(\mathrm{UO}_{2}\right)(\mathrm{a})$, and for IFA-515.10 $\operatorname{rod} \mathrm{B} 2\left(\mathrm{UO}_{2}-8 \% \mathrm{Gd}_{2} \mathrm{O}_{3}\right)$ (b) (burnup $=80 \mathrm{GWd} / \mathrm{MTU}$, as-fabricated radial gap $=25 \mu \mathrm{~m}$)

Figures 3.37 and 3.38 show the measured and predicted centerline temperature for IFA-636 rods 2 and 4. These rods contain standard Gd (no Gd depletion like IFA-515.10), so the release version of FRAPCON4.0 could be used. Rod 2 was equipped with a centerline thermocouple, and the data from this thermocouple is shown in Figure 3.37. Rod 4 contains solid pellets, and the data shown in Figure 3.38 is estimated from rod 2. Because rod 4 does not have a direct measurement of temperature (no thermocouple), there is more uncertainty in the data from rod 4 because this is estimated by Halden using the rod 2 temperature data and correcting for no thermocouple hole. In addition, during the first rise to power, as the Gd is burning out, there is a high level of uncertainty on the reported rod power. Because of
this, FRAPCON-4.0 may not predict the centerline temperature well during this period. These figures show excellent agreement between the FRAPCON-4.0 predictions and the data for rod 2, significant underprediction ($175 \mathrm{~K}, 15 \%$ relative) between 4 to $10 \mathrm{GWd} / \mathrm{MTU}$, and reasonable agreement above 10 $\mathrm{GWd} / \mathrm{MTU}$ for rod 4 , which has greater uncertainty.

Figure 3.37. Measured and Predicted Centerline Temperature for IFA-636r2 $\left(\mathrm{UO}_{2}-8 \% \mathrm{Gd}_{2} \mathrm{O}_{3}\right)$ (burnup=25 GWd/MTU, as-fabricated radial gap=77 $\mu \mathrm{m}$)

Figure 3.38. Measured and predicted centerline temperature for IFA-636r4 $\left(\mathrm{UO}_{2}-8 \% \mathrm{Gd}_{2} \mathrm{O}_{3}\right)($ burnup $=$ $25 \mathrm{GWd} / \mathrm{MTU}$, as-fabricated radial gap $=77 \mu \mathrm{~m}$)

Figures 3.39 through 3.44 show the measured and predicted centerline temperature for IFA-681 rods 1, 2, and 3 with centerline thermocouples and rods 4,5 , and 6 with hollow pellets and expansion thermometers. Rods 1 and 5 are UO_{2} rods. Rods 2 and 4 contain standard Gd with $2 \mathrm{wt} \% \mathrm{Gd}_{2} \mathrm{O}_{3}$. Rods 3 and 6 contain standard Gd with $8 \mathrm{wt} \% \mathrm{Gd}_{2} \mathrm{O}_{3}$. Since these rods contain standard Gd, the release version of FRAPCON-4.0 could be used. During the first rise to power, as the Gd is burning out, there is a high level of uncertainty on the reported rod power. Because of this, FRAPCON-4.0 may not predict the centerline temperature well during this period. This does not significantly affect future predictions because power levels while the Gd is burning out are low and will not cause significant FGR that will affect future temperature predictions.

These figures show excellent agreement between the FRAPCON-4.0 predictions and the data for rods $\left(\mathrm{UO}_{2}\right) 1$ and $2\left(2 \mathrm{wt} \% \mathrm{Gd}_{2} \mathrm{O}_{3}\right)$ (Figures 3.39 and 3.40). For rod $3\left(8 \mathrm{wt} \% \mathrm{Gd}_{2} \mathrm{O}_{3}\right)$ (Figure 3.41), the FRAPCON-4.0 predictions are in excellent agreement with the data for the first 200 days. After this, FRAPCON-4.0 overpredicts the data by up to 120 K (13% relative). The reason for this is not clear, as both the power and the FRAPCON-4.0 temperature prediction increase during this time period, but the measured temperature does not increase with increasing power. For the hollow pellet rods, the UO_{2} and $2 \mathrm{wt} \% \mathrm{Gd}_{2} \mathrm{O}_{3}$ rods (IFA-681 rods 5 and 4 in Figures 3.43 and 3.42, respectively) are uniformly underpredicted by about $50-90 \mathrm{~K}\left(4-7 \%\right.$ relative) while the $8 \mathrm{wt} \% \mathrm{Gd}_{2} \mathrm{O}_{3} \operatorname{rod}$ (IFA- $681 \operatorname{rod} 6$) is predicted well (Figure 3.44). These differences are well within the uncertainty of temperature measurement and power levels.

Figure 3.39. Measured and Predicted Centerline Temperature for IFA-681r1 $\left(\mathrm{UO}_{2}\right)$ (burnup = $24 \mathrm{GWd} / \mathrm{MTU}$, as-fabricated radial gap $=85 \mu \mathrm{~m}$)

_—Rod 2 Data FRAPCON-4.0

Figure 3.40. Measured and Predicted Centerline Temperature for IFA-681r2 $\left(\mathrm{UO}_{2} 2 \% \mathrm{Gd}_{2} \mathrm{O}_{3}\right)$ (burnup $=$ $23 \mathrm{GWd} / \mathrm{MTU}$, as-fabricated radial gap $=85 \mu \mathrm{~m}$)

Figure 3.41. Measured and predicted centerline temperature for IFA-681r3 $\left(\mathrm{UO}_{2} 8 \% \mathrm{Gd}_{2} \mathrm{O}_{3}\right)$ (burnup $=$ $12 \mathrm{GWd} / \mathrm{MTU}$, as-fabricated radial gap $=85 \mu \mathrm{~m}$)

Figure 3.42. Measured and Predicted Centerline Temperature for IFA-681r4 $\left(\mathrm{UO}_{2} 2 \% \mathrm{Gd}_{2} \mathrm{O}_{3}\right)$ (burnup $=$ $22 \mathrm{GWd} / \mathrm{MTU}$, as-fabricated radial gap $=85 \mu \mathrm{~m}$)

Figure 3.43. Measured and Predicted Centerline Temperature for IFA-681r5 $\left(\mathrm{UO}_{2}\right)$ (burnup = $23 \mathrm{GWd} / \mathrm{MTU}$, as-fabricated radial gap $=85 \mu \mathrm{~m}$)

Figure 3.44. Measured and Predicted Centerline Temperature for IFA-681r6 $\left(\mathrm{UO}_{2} 8 \% \mathrm{Gd}_{2} \mathrm{O}_{3}\right)$ (burnup $=$ $13 \mathrm{GWd} / \mathrm{MTU}$, as-fabricated radial gap $=85 \mu \mathrm{~m}$)

This section demonstrates that FRAPCON-4.0 continues to provide a best-estimate prediction of centerline temperature for $\mathrm{UO}_{2}-\mathrm{Gd}_{2} \mathrm{O}_{3}$ rods to within a standard error of 4.8 percent for recent experimental data.

4.0 Fission Gas Release Assessment

4.1 Assessment of Steady-State FGR Predictions

An accurate prediction of FGR is important for two reasons: 1) it has a significant impact on the prediction of gap conductance and, therefore, fuel temperatures (e.g., as demonstrated in Section 3.0, an overprediction of FGR can result in an overprediction of fuel temperatures, and the converse is also true), and 2) it is necessary for the calculation of rod internal pressures that affect LOCA analyses and EOL rod pressures. In many cases, for current operating plants, the limits on and analyses of EOL rod pressures determine the LHGR limits for commercial fuel at burnups greater than $30 \mathrm{GWd} / \mathrm{MTU}$. In addition, the NRC requires that these EOL rod pressure analyses include bounding normal operation transients (e.g., xenon transients lasting several hours) and AOOs (e.g., overpower transients lasting several minutes to hours). Therefore, the accurate prediction of transient FGR under conditions of power increases above steady-state operation is important for licensing analyses.

The code's ability to predict FGR in UO_{2} fuel has been assessed based on comparisons to FGR data from $23 \mathrm{UO}_{2}$ fuel rods with power histories that are relatively steady-state through the rods' irradiation life and $19 \mathrm{UO}_{2}$ rods with power bumping (increase in rod power) at EOL to simulate an overpower AOO or normal operational transients. The code's ability to predict FGR in MOX fuel has been assessed based on comparisons to FGR data from 34 MOX fuel rods with power histories that are relatively steady-state through the rods' irradiation life and 8 MOX rods with power bumping (increase in rod power) at EOL to simulate an overpower AOO or normal operational transients. The fuel rods with greater than 5 percent FGR were selected because the limiting rods in terms of EOL rod pressure in today's plants (particularly for power uprated plants) have releases above 10 percent FGR.

Four fuel rods with $\mathrm{UO}_{2}-\mathrm{Gd}_{2} \mathrm{O}_{3}$ fuel were available for assessment of the code's ability to predict FGR in $\mathrm{UO}_{2}-\mathrm{Gd}_{2} \mathrm{O}_{3}$ fuel. This is not a large database, but these comparisons seem to indicate that FRAPCON-4.0 will predict FGR from $\mathrm{UO}_{2}-\mathrm{Gd}_{2} \mathrm{O}_{3}$ fuel well. This is consistent with the observation that the measured FGR from $\mathrm{UO}_{2}-\mathrm{Gd}_{2} \mathrm{O}_{3}$ rods is similar to the FGR from UO_{2} rods with the same power history (Hirai et al. 1995).

The assessment in this section has used the default FGR model in the MASSIH subroutine in the code that is based on a modified release model proposed by Forsberg and Massih (1985). This release model is described in Volume 1 of this report (Geelhood and Luscher 2014). The other FGR models in FRAPCON-4.0 (i.e., ANS-5.4 and FRAPFGR) provide reasonable predictions of FGR for fuel rods with steady-state power histories, but on average underpredicted FGR for fuel rods with power bumping for a few hours duration.

The following discussions are divided into comparisons of the code predictions to steady-state FGR data and to power bumping (transient) FGR data

4.1.1 UO_{2} Steady-State FGR Predictions

Figure 4.1 shows the predicted FGR as a function of measured FGR for the steady-state UO_{2} rods. Figure 4.2 shows the predicted minus measured FGR as a function of burnup for the steady-state UO_{2} rods. The steady-state UO_{2} cases with measured and predicted FGRs are shown in Table 4.1. The
standard deviation for the steady-state predictions is 2.6 percent absolute FGR up to $70 \mathrm{GWd} / \mathrm{MTU}$. These figures demonstrate that FRAPCON-4.0 provides a best-estimate calculation of fission gas over a wide range of gas release levels up to a rod-average burnup of $62 \mathrm{GWd} / \mathrm{MTU}$. There are a few cases at higher burnup, but these cases indicated that FRAPCON-4.0 may begin to underpredict FGR at burnup levels beyond $62 \mathrm{GWd} / \mathrm{MTU}$ (Figure 4.2).

Figure 4.1. Comparison of FRAPCON-4.0 Predictions to Measured FGR Data for the UO_{2} Steady-State Assessment Cases

Figure 4.2. Predicted Minus Measured FGR Versus Rod-Average Burnup for the UO_{2} Steady-State Assessment Cases

Table 4.1. Steady-State UO_{2} FGR Assessment Cases

Rod	Rod-Average Burnup GWd/MTU	Measured FGR, \%	FRAPCON-4.0 Predicted FGR, \%
24 i 6	60.1	21.8	22.7
36 i 8	61.5	33.8	38.09
111 i 5	48.6	14.4	14.79
28 i 6	53.3	13.2	13.44
HBEP BNFL-DE	42	10.7	10.24
LFF	3.29	17.3	19.35
CBP	2.61	14.1	14.51
4110-ae2	6.2	22.1	16.56
4110-be2	6.6	15.9	16.65
332	56.8	20.9	17.24
EPL-4	10.4	17.3	20.72
CBR	2.7	14.1	15.58
CBY	2.65	16.8	16.73
HBEP BNFL5-DH	33.9	20	15.73
FUMEX 6 f	55.45	45 ± 5	42.99
FUMEX 6s	55.45	50 ± 5	56.34
IFA 597.3	70	15.8	14.55
IFA429DH	98.9	57.4	54.36
ANO TSQ002	53.2	1	1.78
Oconee 15309	50	0.8	1.25
30i8	57.85	34.5	36.78
m2-2c	43.75	35.6	41.25
pa29-4	47.39	48.1	45.80

4.1.2 MOX Steady-State FGR Predictions

Figure 4.3 shows the predicted FGR as a function of measured FGR for the steady-state MOX rods. Figure 4.4 shows the predicted minus measured FGR as a function of burnup for the steady-state MOX rods. The steady-state MOX cases with measured and predicted FGRs are shown in Table 4.2. The standard deviation for the steady-state predictions is 6.8 percent FGR. It is noted that some of these MOX rods are from the Advanced Test Reactor (ATR) at Idaho National Laboratory and are subject to large radial flux profiles. Because of this, it is difficult to estimate the rod-average power. If the ATR rods are removed from the calculation of standard deviation, a standard deviation of 4.4 percent absolute FGR is calculated. These figures demonstrate that FRAPCON-4.0 provides a best-estimate calculation of fission gas over a wide range of gas release levels up to a rod-average burnup of $62 \mathrm{GWd} / \mathrm{MTU}$. There are a few cases at higher burnup, but these cases indicated that FRAPCON-4.0 may begin to underpredict FGR at burnup levels beyond $62 \mathrm{GWd} / \mathrm{MTU}$ (Figure 4.4).

- Steady-State \downarrow Steady-State (ATR) ———Predicted = Measured

Figure 4.3. Comparison of FRAPCON-4.0 Predictions to Measured FGR Data for the MOX SteadyState Assessment Cases

\bullet Steady-State $\stackrel{\text { Steady-State (ATR) }}{ }$
Figure 4.4. Predicted Minus Measured FGR Versus Rod-Average Burnup for the MOX Steady-State Assessment Cases

Table 4.2. Steady-State MOX FGR Assessment Cases

Rod	Rod-Average Burnup GWd/MTU	$\begin{gathered} \text { Measured FGR } \\ \% \end{gathered}$	FRAPCON-4.0 Predicted FGR, \%
IFA-651.1r1	22.41	10^{*}	11.13
IFA-651.1r3	21.73	2^{*}	1.68
IFA-651.1r6	20.27	$7{ }^{*}$	1.88
ATR PII C2 P5	21	1.146	22.19
ATR PIII C3 P6	30	1.253	15.96
ATR PIII C10 P13	30	2.019	16.98
ATR PIV C4 P7	40	8.214	18.69
ATR PIV C5 P8	50	3.009	7.12
ATR PIV C6 P9	50	7.066	10.11
ATR PIV C12 P15	50	8.761	9.87
Gravelines N06	48	4.12	3.5
Gravelines N12	57	4.86	4.48
Gravelines P16	53	2.58	1.21
IFA-629.1	29	21.7	19.13
IFA-606 Phase 2	49	12	17
IFA 633.1r6	32	6	12.66
M504 H8	37.5	0.54	0.26
M504 I2	43	0.85	0.75
M504 K9	42.5	0.85	0.65
M504 M9	44.2	2.26	0.82
IFA-597.4/.5/.6/.7r10	35.7	17	13.17
IFA-597.4/.5/.6/.7r11	36.8	14	20.95
IFA-629-3r5	68.3	21	6.28
IFA-629-3r6	63.6	12	5.73
E09 Rods Inner	29.6	0.2	5.66
E09 Rods Inner	29.6	0.4	5.66
E09 Rods Intermediate	39.3	21	19.05
E09 Rods Intermediate	39.3	21	19.05
E09 Rods Outer	42	19.5	17.86
E09 Rods Outer	42	18.2	17.86
E09 Rods Outer	42	19.5	17.86
E09 Rods Outer	42	18.9	17.86
E09 Rods Outer	42	19.6	17.86
M308 Segment 2	57.5	5	4.24
*End-of-life FGR estimated from rod pressure data (larger error than data from puncture).			

4.1.3 $\quad \mathrm{UO}_{2}-\mathrm{Gd}_{2} \mathrm{O}_{3}$ Steady-State FGR Predictions

The four steady-state $\mathrm{UO}_{2}-\mathrm{Gd}_{2} \mathrm{O}_{3}$ cases with measured and predicted FGRs are shown in Table 4.3. The standard deviation for these four predictions is 0.3 percent absolute FGR. Based on this comparison, it appears that the modified Massih model employed by FRAPCON-4.0 to describe FGR for UO_{2} fuels can provide reasonable predictions for FGR from $\mathrm{UO}_{2}-\mathrm{Gd}_{2} \mathrm{O}_{3}$ fuel. However, it is noted that the burnup range is limited ($34-40 \mathrm{GWd} / \mathrm{MTU}$) and the gas release values are small. Therefore it cannot be fully confirmed that this conclusion will hold for high burnup. However, this observation is consistent with previous studies conducted by Delorme et al. (2012) and Arana et al. (2012). Delorme studied an irradiated M5clad fuel rod containing UO_{2} doped with $8 \mathrm{wt} \% \mathrm{Gd}$. The rod average burnup was $39.2 \mathrm{GWd} / \mathrm{MTU}$ and exhibited 0.51% FGR. Although an enhanced high burnup structure was observed and attributed to the chemical effect of Gd additions, the FGR data was consistent with UO_{2} rods irradiated to similar levels of burnup, although the measured FGR values are very low. Arana characterized the FGR from fuel rods subjected to high duty conditions in Vadenllos II as part of a High Burnup Program (PAQ). Gd-doped rods containing 2 and $8 \mathrm{wt} \% \mathrm{Gd}$ were irradiated to ~ 50 and $55 \mathrm{MWd} / \mathrm{kgU}$ under high power and high burnup conditions, respectively. The FGR data from these rods were consistent with the FGR data measured from UO_{2} pellets under similar power levels.

Table 4.3. Steady-State $\mathrm{UO}_{2}-\mathrm{Gd}_{2} \mathrm{O}_{3}$ FGR Assessment Cases

Rod	Rod-Average Burnup GWd/MTU	Measured FGR $\%$	FRAPCON-4.0 Predicted FGR, $\%$
GAIN 301	38.8	0.23	0.53
GAIN 302	37.9	0.19	0.37
GAIN 701	38.9	0.98	0.71
GAIN 701	38.9	0.66	0.30

4.2 Assessment of Power-Ramped FGR Predictions

4.2.1 UO_{2} Power-Ramped FGR Predictions

Figure 4.5 shows the predicted FGR as a function of measured FGR for the power-ramped UO_{2} rods. Figure 4.6 shows the predicted minus measured FGR as a function of burnup for the power-ramped UO_{2} rods. The power-ramped UO_{2} cases with measured and predicted FGRs are shown in Table 4.4. These comparisons show that the code provides a good prediction of the transient FGR data except for the two High Burnup Effects Program (HBEP) rods, D200 and D226, which are underpredicted by 21 percent and 12 percent release, respectively. The fuel in both of these rods is considered atypical of today's fuel used in commercial rods because it is prone to significant fuel densification (>2.5 percent theoretical density (TD)), unlike the less densification prone (stable) fuel (<1.5 percent TD) of current fuel designs. In addition, there is evidence that fuel with significant densification releases more fission gas than current stable fuel. The standard deviation for the power-ramped predictions without D200 and D226 is 5.4 percent absolute FGR. These figures demonstrate that FRAPCON-4.0 provides a best-estimate calculation of fission gas over a wide range of gas release levels up to a rod-average burnup of $62 \mathrm{GWd} / \mathrm{MTU}$.

Normal operational transients typically last between 4 and 12 hours, while AOO power transients last less than 30 minutes. Because both of these types of transients can lead to FGR, the NRC requires that both be included in the rod internal pressure analyses to demonstrate that they meet the no cladding liftoff criterion for establishing a rod pressure limit. In general, the short hold time AOO transient results in the lower FGR. However, the burst release typically seen in transients on the order of less than 30 minutes appears to be increasing with increasing burnups, particularly above $62 \mathrm{GWd} / \mathrm{MTU}$, such that the code may be underpredicting release for short time period transients at high burnup. Therefore, future code verification will examine FGR data with power ramps of short duration.

Figure 4.5. Comparison of FRAPCON-4.0 Predictions to Measured FGR Data for the UO_{2} PowerRamped Assessment Cases

Figure 4.6. Predicted Minus Measured FGR Versus Rod-Average Burnup for the UO_{2} Power-Ramped Assessment Cases

Table 4.4. Power-Ramped UO_{2} FGR Assessment Cases

	Rod-Average Burnup GWd/MTU	Measured FGR $\%$	FRAPCON-4.0 Predicted Rod
HBEP D200	25	38	16.23
HBEP D226	44	44.1	31.62
pk6-2	36.8	3.5	9.19
pk6-3	36.5	6.7	10.11
pk6-S	35.9	6.1	10.15
Inter Ramp Rod 16	21	16	14.84
Inter Ramp Rod 18	18	4	6.48
Risø f14-6.in	27	22.1	13.97
Risø f7-3.in	35	11.5	13.88
Risø f9-3.in	33	17.5	17.24
Risø ge2	41.9	24.6	25.64
Risø ge4	23.96	27	18.31
Risø ge6	42.29	26	33.64
Risø ge7	41	14.4	10.88
B\&W Studsvik R1	62.3	9.4	11.83
B\&W Studsvik R3	62.1	11.3	13.16
Risø AN1	41.3	34.16	25.54
Risø AN8	40.3	13.85	5.47
regate	50.2	11.7	11.35

4.2.2 MOX Power-Ramped FGR Predictions

Figure 4.7 shows the predicted FGR as a function of measured FGR for the power-ramped MOX rods. Figure 4.8 shows the predicted minus measured FGR as a function of burnup for the power-ramped MOX rods. The power-ramped MOX cases with measured and predicted FGRs are shown in Table 4.5. The standard deviation for the steady-state predictions is 11.6 percent absolute FGR and the average deviation (bias) is 10.3 percent absolute FGR. These figures demonstrate that FRAPCON-4.0 tends to overpredict the gas release measurement for power-ramped MOX rods. However, it is noted that a limited number of power-ramped rods from only one experimental program are represented here. In addition, it is conservative to overpredict FGR during a power ramp.

Figure 4.7. Comparison of FRAPCON-4.0 Predictions to Measured FGR Data for the MOX PowerRamped Assessment Cases

\bullet Power Ramped
Figure 4.8. Predicted Minus Measured FGR Versus Rod-Average Burnup for the MOX Power-Ramped Assessment Cases

Table 4.5. Power-Ramped MOX FGR Assessment Cases

	Rod-Average Burnup GWd/MTU	Measured FGR $\%$	FRAPCON-4.0 Predicted Rod
M501 HR-1	37	7.67	19.55
M501 HR-2	37	8.24	16.92
M501 HR-3	37	18.21	29.87
M501 HR-4	36	16.04	31.63
M501 MR-1	34	2.43	12.32
M501 MR-2	34	9.2	19.4
M501 MR-3	34	6.39	18.43
M501 MR-4	33	2.17	5

5.0 Internal Rod Void Volume Assessment

5.1 Fuel Rod Void Volume

An accurate prediction of the internal void volume of a fuel rod is important in the calculation of the internal rod pressures along with the FGR prediction. The change in the fuel rod void volume with burnup is primarily due to the combined effects of cladding creep, fuel swelling, and axial cladding growth. Five well-characterized fuel rods were selected to assess the capability of FRAPCON-4.0 to accurately calculate fuel rod void volumes for high burnup. The cases selected include two full-length rods (rod TSQ002 from ANO-2 and rod 15309 from Oconee) and three short (44 inches long) rods (36-I-8, 111-I-5, and 24-I-6) that were irradiated in the BR-3 reactor. The set includes only PWR fuel rods with standard Zircaloy-4. The burnup levels achieved on these rods range from 48.6 to $61.5 \mathrm{GWd} / \mathrm{MTU}$. It would be desirable to include more commercial fuel rods in this assessment, but to date no more fuel rods with reported power histories and measured void volumes have been found.

Table 5.1 presents the measured and FRAPCON-4.0 calculated void volume at both BOL and EOL for the five fuel rods. The calculations were made at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$ and atmospheric pressure, which should be reasonably close to the temperature at which the data were collected. A range of values for void volume is provided for Oconee rod 15309 because this is the range of void volumes measured from 16 sibling fuel rods from the same assembly-including the representative rod 15309. All sixteen rods have very similar EOL burnups and similar power histories. Therefore, the void volume range includes representative uncertainty in the fabricated void volumes, measured rod power histories, and burnup.

The FRAPCON-4.0 code does a good job of calculating the integral fuel rod void volumes, particularly for the commercial reactor rods whereas-fabricated void volumes were provided. The three BR-3 test rods are overpredicted by 25 percent on average, but this may be due to an overestimation in the as-fabricated void volumes.

Table 5.1. Measured and Calculated Void Volume for Five High-Burnup Fuel Rods

		Burnup,		BOL Void Volume, in. ${ }^{3}$		EOL Void Volume, in. ${ }^{3}$	
Reactor	Rod	GWd/MTU	Measured	Calculated	Measured	Calculated	
BR-3	$36-I-8$	61.5	NA	0.645	0.508	0.678	
BR-3	$111-I-5$	48.6	NA	0.648	0.516	0.608	
BR-3	$24-I-6$	60.1	NA	0.646	0.491	0.614	
ANO-2	TSQ002	53.0	1.55	1.55	1.086	1.069	
Oconee	15309	49.5 to 49.9	2.14	2.14	1.60 to 1.72	1.573	

6.0 Cladding Corrosion Assessment

Seven well-characterized fuel rods were selected to demonstrate the capability of FRAPCON to accurately calculate fuel rod waterside oxidation for high burnup. The cases selected include seven fulllength rods (rod TSQ002 from ANO-2; rod 15309 from Oconee; rod A1 from Monticello bundle MTB99; rod H8/36-6 from TVO-1; and rods A06, A12, and N05 from Vandellos II). The set includes both PWR and BWR fuel rods that are standard Zircaloy-4, ZIRLO, or M5 in PWRs and Zircaloy-2 in BWRs. (These are the cladding alloys currently modeled in FRAPCON-4.0.) The rod-average burnup levels achieved on these rods range from 45 to $53 \mathrm{GWd} / \mathrm{MTU}$. The corrosion and hydrogen pickup models in FRAPCON-4.0 have been compared to significantly more separate effects data (Geelhood and Beyer 2008, Geelhood and Beyer 2011) to demonstrate good predictions, but these cases are those with reported power histories and end-of-life measured oxide thickness.

Table 6.1 shows the measured and FRAPCON-4.0 calculated peak oxide layer thickness for the two selected high-burnup BWR rods. The measured and predicted corrosion layer thicknesses as a function of axial position along the rod are shown for the two PWR rods in Figures 6.1 and 6.2. The comparisons indicate that FRAPCON-4.0 can satisfactorily predict peak and axial variation in cladding waterside oxidation.

FRAPCON calculated peak oxide layer thicknesses are bracketed by the choice of crud layer thickness for the PWR rods and are in good agreement for the two BWR rods. The purpose of these code-data comparisons is to demonstrate similar predictions as with standalone versions of the corrosion/hydriding models. The BWR peak corrosion values are fairly well matched by the FRAPCON predictions, and these predictions are not as sensitive to the crud layer input because of the relatively lower heat fluxes and lower operating temperatures.

The conclusion is that the modeling of waterside oxidation is sufficient in FRAPCON-4.0 for bestestimate analyses. Using integral effect and separate effect data the following standard deviations for each alloy has been calculated or estimated as shown in (Geelhod and Beyer 2008).

- Zircaloy-2: $\sigma=7.6 \mu \mathrm{~m}$
- Zircaloy-4: $\sigma=15.3 \mu \mathrm{~m}$
- ZIRLO: $\sigma=15 \mu \mathrm{~m}$
- M5: $\sigma=5 \mu \mathrm{~m}$

6.1 BWR Cladding Corrosion

The only alloy currently used in the United States for BWR conditions is Zircaloy-2. The following assessment shows the FRAPCON-4.0 predictions of cladding corrosion for two commercial rods with Zircaloy-2.

6.1.1 Zircaloy-2 Corrosion

Table 6.1 shows the measured and FRAPCON-4.0 calculated peak oxide layer thickness for the two selected high-burnup BWR rods.

Table 6.1. Measured and Calculated Oxidation for Two High-Burnup BWR Fuel Rods

		Burnup,		Peak Oxide Layer Thickness, $\mu \mathrm{m}$	
Reactor	Rod	GWd/MTU	Measured	Calculated	
Monticello	MTB99 rod A1	45.0	25	29	
TVO-1	H8/36-6	51.4	28	22	

These comparisons indicate satisfactory capability of FRAPCON-4.0 to predict peak cladding waterside oxidation under BWR conditions.

6.2 PWR Cladding Corrosion

The alloys currently used in the United States for PWR conditions are Zircaloy-4, ZIRLO, and M5. The following assessment shows the FRAPCON-4.0 predictions of cladding corrosion for two commercial rods with Zircaloy-4, two commercial rods with ZIRLO, and one commercial rod with M5.

6.2.1 Zircaloy-4 Corrosion

Figures 6.1 and 6.2 show the measured and predicted corrosion layer thicknesses as a function of axial position along the rod for the two PWR rods with Zircaloy-4 cladding.

Figure 6.1. Measured and Predicted Corrosion Layer Thickness as a Function of Axial Position for Oconee 5-cycle PWR Zircaloy-4 Rod 15309, 49.5 GWd/MTU (rod average)

Figure 6.2. Measured and Predicted Corrosion Layer Thickness as a Function of Axial Position for ANO-2 5-cycle PWR Zircaloy-4 Rod TSQ002, 53 GWd/MTU (rod average)

These comparisons indicate satisfactory capability of FRAPCON-4.0 to predict peak cladding waterside oxidation of Zircaloy-4 under PWR conditions.

6.2.2 ZIRLO Corrosion

Figures 6.3 and 6.4 show the measured and predicted corrosion layer thicknesses as a function of axial position along the rod for the two PWR rods with ZIRLO cladding.

Figure 6.3. Measured and Predicted Corrosion Layer Thickness as a Function of Axial Position for Gravelines 5-Cycle PWR ZIRLO Rod A06, $65.9 \mathrm{GWd} / \mathrm{MTU}$ (rod average)

Figure 6.4. Measured and Predicted Corrosion Layer Thickness as a Function of Axial Position for Gravelines 5-Cycle PWR ZIRLO Rod A12, 66.4 GWd/MTU (rod average)

These comparisons indicate satisfactory capability of FRAPCON-4.0 to predict peak cladding waterside oxidation of ZIRLO under PWR conditions.

6.2.3 M5 Corrosion

Figure 6.5 shows the measured and predicted corrosion layer thicknesses as a function of axial position along the rod for the PWR rod with M5 cladding.

Figure 6.5. Measured and Predicted Corrosion Layer Thickness as a Function of Axial Position for Gravelines 5-Cycle PWR M5 Rod N05, 68.1 GWd/MTU (rod average)

This comparison indicates satisfactory capability of FRAPCON-4.0 to predict peak cladding waterside oxidation of M5 under PWR conditions.

7.0 Cladding Hoop Strain During Power Ramps

7.1 Assessment Cases

The ability of FRAPCON-4.0 to predict permanent hoop strain during power ramps was originally assessed against a database consisting of 29 power-ramped rods at burnup levels between 18 and $76 \mathrm{GWd} / \mathrm{MTU}$ to ramp terminal levels between 30 and $52 \mathrm{~kW} / \mathrm{m}$. Some of these rods were held at the ramp terminal level for a significant period of time (>4 hours) while others were held for a very short period of time (1-30 s). The measured and predicted rod-average permanent hoop strains are shown in Figures 7.1 and 7.2. This figure shows that in general FRAPCON-4.0 overpredicts the measured hoop strain. It was found that FRAPCON-4.0 overpredicts cladding permanent strain by 0.11 percent (on average) with significant variation between predicted and measured.

Figure 7.1. Measured and Predicted Rod-Average Permanent Hoop Strain for First Half of the Assessment Database

Figure 7.2. Measured and Predicted Peak Node Permanent Hoop Strain for Second Half of the Assessment Database. SCIP ramp tests are not explicitly labeled to protect the sensitivity of this information.

This overprediction is consistent with the fact that FRAPCON-4.0 uses a rigid pellet assumption. This means that the pellet is assumed to be significantly stronger than the cladding such that it will not deform, other than the code-assumed accommodation of 50 percent of the relocation, when it comes in contact with the cladding.

7.2 Comparisons vs. Ramp Terminal Level

Figure 7.3 shows the predicted minus measured permanent hoop strain for all the assessment cases as a function of ramp terminal power level. There does not appear to be any bias in the predictions with increase ramp terminal power level. However, it does appear that the ramps with short hold times are all overpredicted more than the SCIP ramps with long hold times.

Figure 7.3. Predicted Minus Measured Permanent Hoop Strain as a Function of Ramp Terminal Power Level

7.3 Comparisons vs. Burnup

Figure 7.4 shows the predicted minus measured permanent hoop strain for all the assessment cases as a function of burnup. FRAPCON-4.0 generally provides a good prediction or slight over-prediction of permanent hoop strain up to $76 \mathrm{GWd} / \mathrm{MTU}$.

Figure 7.4 Predicted Minus Measured Permanent Hoop Strain as a Function of Burnup

The FRAPCON-4.0 predictions for the ramp test data appear to be predicted well up to $62 \mathrm{GWd} / \mathrm{MTU}$. There is more scatter in the predictions for power ramps above $62 \mathrm{GWd} / \mathrm{MTU}$, but other than one ramp test that is significantly underpredicted they also seem to be predicted well.

8.0 Conclusions

The FRAPCON-4.0 steady-state fuel performance code has been assessed against a set of pre-selected data from 137 well-characterized fuel rods. The data used for the assessment consisted of measurements of thermal (fuel temperature), FGR, rod internal void volume, and cladding corrosion. The fuel rods represent a range of design parameters, including different fuel rod diameters, lengths, gap sizes, and fillgas compositions and a wide range of operating conditions with peak LHGRs varying from 8 to $18 \mathrm{~kW} / \mathrm{ft}$, rod-average burnups from 0 to $99 \mathrm{GWd} / \mathrm{MTU}$, and FGRs ranging from less than 1 percent to greater than 50 percent. The estimates of code thermal and FGR predictive error are based on code comparisons to both the benchmark and independent data sets.

Thermal: Comparisons were made for $\mathrm{BOL}_{\mathrm{UO}}^{2}$ temperature measurements and $\mathrm{UO}_{2}, \mathrm{MOX}$, and $\mathrm{UO}_{2}{ }^{-}$ $\mathrm{Gd}_{2} \mathrm{O}_{3}$ temperature measurements as a function of burnup. For the $\mathrm{UO}_{2} \mathrm{BOL}$ temperature measurements, the FRAPCON-4.0 predictions were within a standard error of 4.6 percent of measured values and no average bias. For the UO_{2} temperature measurements as a function of burnup, the FRAPCON-4.0 predictions were within a standard error of 4.7 percent of the measured values. Only IFA-677 rod 2 was underpredicted by up to 150 K (11% relative) at BOL. For the MOX temperature measurements as a function of burnup, the FRAPCON-4.0 predictions were within a standard error of 4.8 percent of the measured values and much closer in most cases. Only IFA-633.1 was overpredicted by up to 150 K (13% relative) at EOL. This overprediction may be due to the code overpredicting the FGR leading to higher fuel temperatures. For the $\mathrm{UO}_{2}-\mathrm{Gd}_{2} \mathrm{O}_{3}$ temperature measurements as a function of burnup, the FRAPCON-4.0 predictions were within a standard error of 4.8 percent of the measured values and much closer in most cases.

Typically, a standard error of 3 to 4 percent is the uncertainty in temperature due to power level uncertainty.

Overall, FRAPCON-4.0 gives reasonable predictions (standard error of less than 5 percent) of fuel centerline temperature for fuel rods with $\mathrm{UO}_{2}, \mathrm{MOX}$, and $\mathrm{UO}_{2}-\mathrm{Gd}_{2} \mathrm{O}_{3}$ fuel.

Fission Gas Release: Comparisons were made for the $\mathrm{UO}_{2}, \mathrm{MOX}$, and $\mathrm{UO}_{2}-\mathrm{Gd}_{2} \mathrm{O}_{3}$ FGR measurements for rods with widely varying power levels and burnups. $\mathrm{The}_{2} \mathrm{UO}_{2} \mathrm{FGR}$ model was assessed for steadystate conditions and power-ramped rods. For the UO_{2} cases, a standard deviation of 2.6 percent FGR (absolute) was calculated for the steady-state rods and a standard deviation of 5.4 percent FGR (absolute) was calculated for the power-ramped rods when two rods with non-prototypical pellets were removed. These standard deviations are considered reasonable. Although there is little data above $62 \mathrm{GWd} / \mathrm{MTU}$, it appears that FRAPCON-4.0 may underpredict UO_{2} fuel above this burnup level.

For the MOX cases, a standard deviation of 4.4 percent FGR (absolute) was calculated for the steady-state rods when the ATR rods with large power uncertainty were removed, and a standard deviation of 11.6 percent FGR (absolute) was calculated for the limited number of power-ramped rods that all came from one experimental program. The steady-state standard deviation is considered reasonable. The powerramped rods were all overpredicted, which is conservative for rod internal pressure and temperature calculations. However, a larger database of MOX power-ramped cases is needed to further assess if this overprediction is due to a code deficiency. Although there is little data above $62 \mathrm{GWd} / \mathrm{MTU}$, it appears that FRAPCON-4.0 may underpredict MOX fuel above this burnup level.

A limited assessment of $\mathrm{UO}_{2}-\mathrm{Gd}_{2} \mathrm{O}_{3}$ data showed good agreement between measurements and predictions using the UO_{2} FGR model in FRAPCON-4.0. Based on these comparisons and observations by other researchers it was concluded that the FGR from these rods should be conservatively bounded with the UO_{2} FGR model.

Overall, FRAPCON-4.0 gives reasonable predictions (within 5 percent FGR absolute) of fuel centerline temperature for fuel rods with $\mathrm{UO}_{2}, \mathrm{MOX}$, and $\mathrm{UO}_{2}-\mathrm{Gd}_{2} \mathrm{O}_{3}$ fuel.

Internal Void Volume: Comparisons were made to data from four commercial reactor and three test reactor fuel rods. The code predicted the two commercial rods well but overpredicted the BR-3 test rod data by approximately 25 percent (relative) on average.

Cladding Corrosion: Comparisons were made to data from two commercial BWR rods with Zircaloy-2 cladding, two commercial PWR rods with Zircaloy-4 cladding, two commercial PWR rods with ZIRLO cladding, and one commercial PWR rod with M5 cladding. The oxide corrosion predictions were very good and tend to bracket the data. Using integral effect and separate effect data, the following standard deviations for each alloy have been calculated or estimated.

- Zircaloy-2: $\sigma=7.6 \mu \mathrm{~m}$
- Zircaloy-4: $\sigma=15.3 \mu \mathrm{~m}$
- ZIRLO: $\sigma=15 \mu \mathrm{~m}$
- M5: $\sigma=5 \mu \mathrm{~m}$

Cladding Hoop Strain: The original hoop strain assessment cases that were available up to a burnup of around $45 \mathrm{GWd} / \mathrm{MTU}$ demonstrated that, on average, FRAPCON-4.0 slightly overpredicts cladding hoop strain by 0.1 percent strain. FRAPCON-4.0 overpredicted all the short hold times cases. Despite this overprediction, FRAPCON-4.0 provides reasonable hoop strain predictions up to $62 \mathrm{GWd} / \mathrm{MTU}$.

9.0 References

Arana I, C Munoz-Reja, and F Culbebras. 2012. "Post-Irradiation Examination of High Burnup Fuel Rods from Vandellos II." Presented in Transactions of the TopFuel 2012 Reactor Fuel Performance Conference, September 2-6, Manchester, UK, European Nuclear Society.

Bagger C, H Carlson, and P Knudson. 1978. Details of Design Irradiation and fission Gas Release for the Danish U_{2}-Zr Irradiation Test 022. RISO-M-2152, Risø National Laboratory, Denmark.

Balfour MG. 1982. BR-3 High Burnup Fuel Rod Hot Cell Program, Final Report, Vol. 1. WCAP 10238, D0E/ET/34073-1, Westinghouse Electric Corporation, Pittsburgh, Pennsylvania.

Balfour MG, WC Chubb, and RF Boyle. 1982. BR-3 High Burnup Fuel Rod Hot Cell Program Vol. 2: Data Summary, WCAP 10238, DOE/ET 34073-2, Westinghouse Electric Corporation, Pittsburgh, Pennsylvania.

Barner JO, ME Cunningham, MD Freshley, and DD Lanning. 1990. High Burn up Effects Program Summary Report. DOE/NE/3406-1, HBEP-61, Battelle, Pacific Northwest Laboratories, Richland, Washington.

Baumgartner JA. 1984. BWR Fuel Bundle Extended Burnup Program Technical Progress Report, January 1983 to December 1983. DOE/ET/34031-17, GEAP-30643, General Electric Company, San Jose, California.

Beguin S. 1999. The Lift-Off Experiment with MOX Fuel Rod in IFA-610.2 Initial Results. HWR-603, OECD Halden Reactor Project, Halden, Norway.

Blair P and J Wright. 2004. The IFM/MOX Comparative Test, IFA-651.1: Results after Four Cycles of Irradiation. HWR-763, OECD Halden Reactor Project, Halden, Norway.

Boulanger D, M Lippens, L Mertens, J Basselier, and B Lance. 2004. "High Burnup PWR and BWR MOX Fuel Performance: A Review of BELGONUCLEAIRE Recent Experimental Programs." In Proceedings of the 2004 International Meeting on LWR Fuel Performance, Orlando, Florida, September 19-22.

Bradley ER, ME Cunningham, DD Lanning, and RE Williford. 1981. Data Report for the Instrumented Fuel Assembly IFA-513. NUREG/CR-1838, PNL-3637, Pacific Northwest Laboratory, Richland, Washington.

Chantoin PM, E Sartori, and JA Turnbull. 1997. "The Compilation of a Public Domain Database on Nuclear Fuel Performance for the Purpose of Code Development and Validation." In Proceedings of the ANS/ENS International Topical Meeting on Light Water Reactor Fuel Performance, pp. 515-522, Portland, Oregon, March 2-6.

Claudel J and F Huet. 2001. Results from the Burnup Accumulation Test with High Exposure (63 MWd.kg HM) Model Fuel (IFA-648). HWR-651, OECD Halden Reactor Project, Halden, Norway.

Cook P, R Stratton, and CT Walker. 2000. "Post Irradation Examination of BNFL MOX Fuel." In Proceedings of the 2000 International Meeting on LWR Fuel Performance, Park City, Utah, April 10-13.

Cook P, B Christiansen, G Dassel, E Matthews, I Robinson, R Stratton, C Walker, and R Weston. 2003.
"Performance of BNFL MOX Fuel." Transactions of ENS TopFuel 2003, Wurzburg, Germany, March 16-19.

Cook P, E Matthews, M Barker, R Foster, A Donaldson, C Ott, D Papaioannou, and C Walker. 2004. "Post-Irradiation Examination and Testing of BNFL SBR MOX Fuel." In Proceedings of the 2004 International Meeting on LWR Fuel Performance, Orlando, Florida, September 19-22.

CSN, ENUSA. 2002. "Characteristics of the ENUSA Rods Irradiated in the Vandellos II Reactor up to $68 \mathrm{GWd} / \mathrm{t}$ and Planned to be Used in the Cabri International Programme." Note Cabri Water Loop, 2002/34.

De Meulemeester E, N Hoppe, G de Contenson, and M Watteau. 1973. "Review of Work Carried out by BELGONUCLEAIRE and CEA on the Improvement and Verification of the COMETHE Computer Code with the Aid of In-Pile Experimental Results." paper ECS-EEC-73-595, BNES International Conference on Nuclear Fuel Performance, London, UK.

Delorme R, Ch Valot, L Fayaette, X Pujol, I Aubrun, J Lamontagne, T Blay, B Pasquet, P Bienvenu, I Roure, C Pozo, G Carlot, C Sabathier, P Martin, G Trillon, V Auret, and S Bouffard. 2012. "Study of Fission Gas Behaviour and Fuel Restructuration in Irradited (U,Gd) O_{2} Fuel." Presented in Transactions of the TopFuel 2012 Reactor Fuel Performance Conference, September 2-6, Manchester, UK, European Nuclear Society.

Djurle S. 1985. Final Report of the Super-Ramp Project. DOE/ET/34032-1, U.S. Department of Energy, Washington, D.C.

Forsberg K and AR Massih. 1985. "Diffusion theory of fission gas migration in irradiated nuclear fuel UO_{2}." Journal of Nuclear Materials 135:140-148.

Fujii H and J Claudel. 2001. The Lift-Off Experiments, IFA-610.3 (UO2), and IFA-610.4 (MOX) Evaluation of In-Pile Measurement Data. HWR-650, OECD Halden Reactor Project, Halden, Norway.

Geelhood KJ, WG Luscher, PA Raynaud, IE Porter. 2015. FRAPCON-4.0: A Computer Code for the Calculation of Steady-State, Thermal-Mechanical Behavior of Oxide Fuel Rods for High Burnup. PNNL19418, Vol. 1 Rev. 2, Pacific Northwest National Laboratory, Richland, Washington.

Geelhood KJ and CE Beyer. 2011. "Hydrogen Pickup Models for Zircaloy-2, Zircaloy-4, M5™ , and ZIRLO ${ }^{\text {TM }}$." Presented in Transactions of 2011 Water Reactor Fuel Performance Meeting, September 1114, Chengdu, China.

Geelhood KJ and CE Beyer. 2008. "Corrosion and Hydrogen Pickup Modeling in Zirconium Based Alloys." Presented in Transactions of 2008 Water Reactor Fuel Performance Meeting, October 19-23, Seoul, Korea.

Hirai M, JH Davies, and R Williamson. 1995. "Diffusivities of fission gas species in UO_{2} and (U, Gd) O_{2} nuclear fuels during irradiation." Journal of Nuclear Materials 226:238-251.

Hoffmann H and N Kraus. 1984. Fabrication and Characterization Data of $\mathrm{BN} 2 \mathrm{UO}_{2}-\mathrm{Gd}_{2} \mathrm{O}_{3}$ Fuel Rod. GAIN Topical Report GN 84/10, Belgonucleaire, Bruxelles, BEL.

Hodge SA, et al. 2002. Implications of the PIE Results for the 30-Gwd/MT-Withdrawal Mox Capsules, ORNL/MD/LTR-212, Volume 2, Revision 1, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

Hodge SA, LJ Ott, and FP Griffin. 2003. Implications of the PIE Results for the 40-Gwd/MT-Withdrawal Mox Capsules. ORNL/MD/LTR-241, Volume 2, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

Janvier J-C, B de Bernaday de Sigoyer, and R Delmas. 1967. Irradiation of Uranium Oxide in Strong Cladding Effect of Initial Diametral Gap on Overall Behavior. Program CC-7, 1st and 2nd Sections, CEA-R-3358, Commiserat a l'Energie Atomic, Paris, France.

Jošek R. 2008. The High Initial Rating Test IFA-677.1: Final Report on In-Pile Results, HWR-872, OECD Halden Reactor Project, Halden, Norway.

Kallstrom R. 2005. SCIP, Task 0; Ramp Test Results, Final Report, (Technical Note N-05/154): STUDSVIK-SCIP-42, Studsvik Nuclear AB, Sweden.

Klecha L. 2006. Comparative Integral Irradiation Test on Gadolinia Fuel (IFA-681). HWR-832, OECD Halden Reactor Project, Halden, Norway.

Knudsen P, C Bagger. H Carlsen, I Misfeldt, and M Mogensen. 1983. Riso Fission Gas Release Project Final Report, DOE/ET/34033-1, U.S. Department of Energy, Washington, D.C.

Koike H. 2004. The MOX Fuel Behaviour Test IFA-597.4/.5/.6/.7; Summary of In-Pile Fuel Temperature and Gas Release Data, HWR-729, OECD Halden Reactor Project, Halden, Norway.

Lanning DD. 1986. Irradiation History and Final Post-Irradiation Data for IFA-432. NUREG/CR-4717, PNL-5977, Pacific Northwest Laboratory, Richland, Washington.

Lanning DD, ME Cunningham, JO Barner, and ER Bradley. 1987. Qualification of Fission Gas Release Data from Task 2 Rods. HBEP 25, Final Report. Pacific Northwest Laboratory, Richland, Washington.

Lysell G and S Birath. 1979. Hot Cell Post-Irradiation Examination of Inter-Ramp Fuel Rods. STIR-51 Studsvik AB Atomenergi, Studsvik, Sweden.

Manley AJ, PD Kennedy, BC Scogings, I Robinson, and JFW Thompson. 1989. Post Irradiation Examination of Three Rods Comprising Task 3 of the GAIN Programme. GAIN Topical Report GN 89/50, United Kingdom Atomic Energy Authority, Windscale Laboratory, UK.

Matsson I and JA Turnbull. 1998. The integral fuel rod behaviour test IFA-597.3: Analysis of the measurements. HWR-543, OECD Halden Reactor Project, Halden, Norway.

Mertens L, M Lippens, and J Alvis. 1998. The FIGARO Programme: The Behaviour of Irradiated MOX Fuel Tested in the IFA-606 Experiment, Description of Results and Comparison with COMETHE Calculation. HPR 349/30 Halden Reactor Project, Halden, Norway.

Mertens L and M Lippens. 2001. "Study of Fission Gas Release on High Burnup MOX Fuel." ENS TopFuel 2001 Conference, Stockholm, Sweden, May 28-30.

Mogard H, U Bergenlid, S Djurle, JA Gyllander, E Larsson, G Lysell, G Ronnberg, K Saltvedt, and H Tomani. 1979. Final Report of the Inter-Ramp Project. STIR-53, Studsvik AB Atomenergi, Studsvik, Sweden.

Morris RN, CA Baldwin, SA Hodge, LJ Ott, CM Malone, and NH Packan. 2000. MOX Average Power Intermediate PIE: 21 GWd/MT Final Report. ORNL/MD/LTR-199, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

Morris RN, CA Baldwin, SA Hodge, and NH Packan. 2001. MOX Average Power 30 GWd/MT PIE: Final Report. ORNL/MD/LTR-212, Volume 1, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

Morris RN, et al. 2005. MOX Test Fuel 50 GWd/MT PIE: Capsule 5 Quick Look. ORNL/MD/LTR-272, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

Newman LW. 1986. The Hot Cell Examination of Oconee-1 Fuel Rods after Five Cycles of Irradiation. DOE/ET/34212-50, BAW-1874, Babcock and Wilcox Company, Lynchburg, Virginia.

Notley MJF and JR MacEwan. 1965. The Effect of UO Density on Fission Product Gas Release 2 and Sheath Expansion. AECL-2230, Atomic Energy of Canada, Limited, Chalk River, Canada.

Notley MJF, R DesHais, and JR MacEwan. 1967. Measurements of the Fission Product Gas Pressures Developed in UO_{2} Fuel Elements During Operation. AECL-2662, Atomic Energy of Canada, Limited, Chalk River, Canada.

Ozawa T. 2004. "Performance of ATR MOX Fuel Assemblies Irradiated to $40 \mathrm{GWd} / \mathrm{t}$." In Proceedings of the 2004 International Meeting on LWR Fuel Performance. Orlando, Florida, September 19-22.

Petiprez B. 2002. Ramp Tests with Two High Burnup MOX Fuel Rods in IFA-629.3. HWR-714, OECD Halden Reactor Project, Halden, Norway.

Reindl J, G Bart, A Erne, R Hofer, A Hermann, R Restani, and HU Zwuicky. 1991. Destructive Examinations on the BN2, Ge5, and NF17 Fuel Rods 9, 10, 11, 23, 24, and 33 of the GAIN Programme. GAIN Topical Report GN 91/60, Paul Scherrer Institut, SUI.

Rø E and G Rossiter. 2005. The SBR MOX and UO Comparison Test in Gas Flow Rig IFA-633: An Update of Results. HWR-0823, OECD Halden Reactor Project, Halden, Norway.

Segura JC and C Bernaudat. 2002. Fuel Characterization Data and Power History of the Rod which is to be tested in the CARI-WL CIPO-2 Test. Note CABRI Water Loop 2002/27.

Smith Jr, GP, RC Pirek, HR Freeburn, and D Schrire. 1994. The Evaluation and Demonstration of Methods for Improved Nuclear Fuel Utilization. DOE/ET/34013-15, Combustion Engineering, Windsor, Connecticut.

Struzik C. 2004. REGATE L10, fission gas release and cladding diameter of UO_{2} rod during and after a transient at $B u=47 \mathrm{MWd} / \mathrm{kg}$. NEA-1696/01, Commissariat à l'Energie Atomique, Cadarache, France.

Thérache B. 2005. Thermal Performance, Densification, Swelling, Fission Gas Release, PCMI, UO 2 , Doped UO_{2}. HWR-819, OECD Halden Reactor Project, Halden, Norway.

Turnbull JA. 2001. Concluding Report on Three PWR Rods Irradiated to $90 \mathrm{MWd} / \mathrm{kg} \mathrm{OO}_{2}$ in IFA-519.9: Analysis of Measurements Obtained In-pile and by PIE. EHPG-Meeting, Lillehammer, Norway, March, HWR-668.

Turnbull JA and RJ White. 2002. The Thermal Performance of the Gas Flow Rigs: A Review of Experiments and Their Analyses. HWR-715, OECD Halden Reactor Project, Halden, Norway.

Tverberg T, B Volkov, and J-C Kim. 2005. Final Report on the $U O_{2}-G_{2} O_{3}$ fuel performance test in IFA636. HWR-817, OECD Halden Reactor Project, Halden, Norway.

Tvergerg T and M Amaya. 2001. Study of Thermal Behaviour of UO_{2} and (U, Gd) O_{2} to High Burnup (IFA-515). HWR-671, OECD Halden Reactor Project, Halden, Norway.

Wesley DA, K Mori, and S Inoue. 1994. "Mark BEB Ramp Testing Program." In Proceedings of the 1994 ANS/ENS International Topical Meeting on Light Water Reactor Fuel Performance, p. 343, West Palm Beach, Florida, American Nuclear Society.

White RJ. 1999. The Re-Irradiation of MIMAS MOX Fuel in IFA-629.1. HWR-586, OECD Halden Reactor Project, Halden, Norway.

White RJ, SB Fisher, PMA Cook, R Stratton, CT Walker, and ID Palmer. 2001. "Measurement and analysis of fission gas release from BNFL's SBR MOX fuel." Journal of Nuclear Materials 288(1):4356. doi:10.1016/S0022-3115(00)00591-2.

Wiesenack W. 1992. "Experimental Techniques and Results Related to High Burn-Up Investigations at the OECD Halden Reactor Project." In Proceedings of a Technical Committee Meeting, p. 118, Pembroke, Ontario, Canada, April 28 - May 1, IAEA-TECDOC-697.

Wright J. 2004. The SBR MOX and UO2 Comparison Test in Gas Flow Rig IFA-633: Results after Seven Cycles of Irradiation. HWR-764, OECD Halden Reactor Project, Halden, Norway.

Appendix A

Input Files for FRAPCON-3.4 Assessment Cases

Appendix A

Input Files for FRAPCON-3.4 Assessment Cases

Steady-State Assessment Cases

A. 1 Halden IFA-432 Rods

The IFA-432 test (Lanning 1986) was irradiated under a research program on fuel rod steady-state performance sponsored by the U.S. Nuclear Regulatory Commission (NRC) from 1974 to 1986. The IFA432 test assembly was a heavily instrumented, six-rod assembly irradiated in the Halden heavy boilingwater reactor (HBWR), Norway, from 1975 to 1984. The purpose was to test the long-term steady-state performance of BWR-6 type fuel rods, operated at power levels that were at the upper bound for fulllength commercial fuel rods. The fuel pellets were fabricated at Pacific Northwest National Laboratory (PNNL) and shipped to Norway; final rod and assembly fabrication was completed at the Halden site. Destructive examinations of selected rods were carried out at Harwell Laboratories, UK.

The assembly included six instrumented rods and three replaceable noninstrumented spares. Each instrumented fuel rod had a centerline thermocouple in both the top and the bottom end of the fuel column and a pressure transducer to monitor rod internal pressure. The assembly instrumentation included six vanadium self-powered neutron detectors (SPNDs) and one cobalt neutron detector, together with rod elongation sensors at each rod position, coolant thermocouples at the top and bottom of the assembly, and a coolant flow meter (turbine).

The test rods were designed to simulate BWR-6 rod cladding type and radial dimensions, with variations in fuel-cladding gap sizes, fuel types, and fill gas compositions. The fuel rod length was much shorter than full-length ($\sim 144-$ inch $)$ commercial reactor rods to fit well within the short length of the Halden reactor core. Fuel rod overall length was 25 inches, with an active fuel column length of 22.8 inches. The overall void volume was held to 0.5 cubic inches (by selection of a ~ 1-inch plenum length at the upper end); this was done to approximate the ratio between fuel volume and void volume found in full-length rods. The cladding for all rods was Zircaloy-2.

Rods 1, 2, and 3 all had typical high-density (95 percent theoretical density (TD)) stable sintered UO_{2} fuel pellets and helium fill gas at 1 atm pressure; slight differences in the pellet diameters created variations in fuel-cladding gap size among the rods. Data taken from rod 1 upper and lower thermocouple, rod 2 lower thermocouple, and rod 3 upper and lower thermocouple during the first ramp to power were used in the beginning-of-life (BOL) temperature assessment. Data from the rod 1 lower thermocouple and the rod 3 lower thermocouple were used in the temperature assessment as a function of burnup. It should be noted that much of the helium fill gas was lost from some of these rods during irradiation due to leakage past the thermocouple penetration through the end caps.

The input files used for the assessments listed in Table 2.1 are shown below.

IFA-432 Rod 1 BOL Upper Thermocouple Case

* GOESINS:

FILE05='nullfile', STATUS='scratch', FORM='FORMATTED', CARRIAGE CONTROL='LIST'
\star

* GOESOUTS:

FILE06='out432r1BOLupper.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='plot432r1BOLupper.n', STATUS='UNKNOWN', FORM='FORMATTED'

```
/**********************************************************************
```

ifa $432 \operatorname{rod} 1$
\$frpen
im=8, na=4, nr=11,
ngasr $=45$,
\$end
\$frpcon
$\mathrm{cpl}=2.0, \mathrm{dco}=0.5035$ thkcld $=0.037$,
den $=95.5$, thkgap=0.0045, rc $=0.0345, \mathrm{dspg}=0.35$,
dspgw $=0.03$, enrch $=10.0$, fgpav $=14.7, \mathrm{hplt}=0.5, \mathrm{icm}=2$,
icor $=0$, idxgas $=1$, iplant $=-4, i q=0, f a=1 .$,
totl $=1.9$, roughc $=2.5 \mathrm{e}-5$, roughf $=8.5 \mathrm{e}-5, \mathrm{vs}=5.0$,
nunits $=1$, rsntr $=75 .$, pitch $=0.56$, nplot=1,
flux $=5 * 5.0 e 15, \mathrm{p} 2(1)=500 ., \operatorname{tw}(1)=464 ., \mathrm{go}(1)=0.0$,
$j d l p r=0, j n(1)=5,5,5,5,5,5,5,5$,
jst(1) $=1,1,1,1,1,1,1,1,6,3,3,2,2,1,4,5,5$,
$6,3,3,2,2,5,2,5,2,2,1,4,5,7,7,7,8,4,4,4,4,4$,
6*4
$\mathrm{qf}(1)=1.0,1.0,1.0,1.0,1.0$,
$x(1)=0.0,0.5,1.0,1.5,1.9$,
$q f(6)=1.1696,1.1696,1.0,0.8304,0.8304$,
$x(6)=0.0,0.5,1.0,1.5,1.9$,
$\mathrm{qf}(11)=1.1905,1.1905,1.0,0.8095,0.8095$,
$x(11)=0.0,0.5,1.0,1.5,1.9$,
$q f(16)=1.105,1.105,1.00,0.895,0.895$,
$x(16)=0.0,0.5,1.0,1.5,1.9$,
$q f(21)=1.1364,1.1364,1 ., 0.8636,0.8636$,
$x(21)=0.0,0.5,1.0,1.5,1.9$,
$q f(26)=1.2195,1.2195,1.0,0.7805,0.7805$,
$x(26)=0.0,0.5,1.0,1.5,1.9$,
$q f(31)=1.1236,1.1236,1.0,0.8764,0.8764$,
$x(31)=0.0,0.5,1.0,1.5,1.9$,
$q f(36)=1.087,1.087,1.0,0.913,0.913$,
$x(36)=0.0,0.5,1.0,1.5,1.9$,
ProblemTime $=0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8$
7., 23., 41.,63.,
91.,104.,129.,154.,159.,
170.,213.,218.,228., 260.,
$300 ., 310 ., 320 ., 350 ., 370 .$,
374.,400.,450.,465.,498.,
550., 600., 605., 615., 640., 650.,
700.,725.,759.,
760., 761.,762.,763., 764., 765.
qmpy $=1.21,2.44,3.65,4.88,6.09$,
7.32,8.53,9.76,
1., 3.,5.,7.,9.,
11.87,11.74,11.00,11.78,11.52,
$11.86,11.14,11.21,9.38,10.74$,
$11.54,9.75,11.26,11.40,8.98$,

```
10.29,7.92,9.77,8.85,10.29,
10.17, 8.97,9.94,10.06,9.79,
9.91,9.77, 8.98, 8.14, 9.29,
9.38,8.83,10.43,
9.,7.,5.,3.,1.,0.01,
slim = .05,
$end
```


IFA-432 Rod 1 BOL Lower Thermocouple Case

* GOESINS:

```
FILE05='nullfile', STATUS='scratch', FORM='FORMATTED',
    CARRIAGE CONTROL='LIST'
```

*
* GOESOUTS:
FILE06='out432r1BOLlower.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='plot432r1BOLlower.n', STATUS='UNKNOWN', FORM='FORMATTED'

ifa 432 rod 1
\$frpen
im=8, na=4, nr=11,
ngasr $=45$,
\$end
\$frpcon
$\mathrm{cpl}=2.0, \mathrm{dco}=0.5035$ thkcld $=0.037$,
den $=95.5$, thkgap=0.0045, rc $=0.0345, \mathrm{dspg}=0.35$,
dspgw $=0.03$, enrch $=10.0$, fgpav $=14.7$, hplt $=0.5, \quad$ icm $=2$,
icor $=0$, idxgas $=1$, iplant $=-4, i q=0, f a=1 .$,
totl $=1.9$, roughc $=2.5 \mathrm{e}-5$, roughf $=8.5 \mathrm{e}-5, \mathrm{vs}=5.0$,
nunits $=1$, rsntr $=75 .$, pitch $=0.56$, nplot=1,
flux $=5 * 5.0 \mathrm{e} 15, \mathrm{p} 2(1)=500 ., \mathrm{tw}(1)=464 ., \mathrm{go}(1)=0.0$,
$j d l p r=0, j n(1)=5,5,5,5,5,5,5,5$,
jst(1) $=1,1,1,1,1,1,1,1,6,3,3,2,2,1,4,5,5$,
$6,3,3,2,2,5,2,5,2,2,1,4,5,7,7,7,8,4,4,4,4,4$,
6*4
$q f(1)=1.0,1.0,1.0,1.0,1.0$,
$x(1)=0.0,0.5,1.0,1.5,1.9$,
$q f(6)=1.1696,1.1696,1.0,0.8304,0.8304$,
$x(6)=0.0,0.5,1.0,1.5,1.9$,
$q f(11)=1.1905,1.1905,1.0,0.8095,0.8095$,
$x(11)=0.0,0.5,1.0,1.5,1.9$,
$q f(16)=1.105,1.105,1.00,0.895,0.895$,
$x(16)=0.0,0.5,1.0,1.5,1.9$,
$q f(21)=1.1364,1.1364,1,0.8636,0.8636$,
$x(21)=0.0,0.5,1.0,1.5,1.9$,
$q f(26)=1.2195,1.2195,1.0,0.7805,0.7805$,
$x(26)=0.0,0.5,1.0,1.5,1.9$,
$\mathrm{qf}(31)=1.1236,1.1236,1.0,0.8764,0.8764$,
$x(31)=0.0,0.5,1.0,1.5,1.9$,
$q f(36)=1.087,1.087,1.0,0.913,0.913$,
$x(36)=0.0,0.5,1.0,1.5,1.9$,
ProblemTime $=0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8$
7., 23., 41.,63.,
91.,104.,129.,154.,159.,
170.,213.,218.,228., 260.,
300., 310., 320., 350., 370.,
374.,400.,450.,465.,498.,

```
550.,600.,605.,615.,640.,650.,
700.,725.,759.,
760., 761.,762.,763., 764., 765.
qmpy = 1.23,2.45,3.67,4.89,6.12,
7.34,8.56,9.78,
    1.,3.,5.,7.,9.,
11.87,11.74,11.00,11.78,11.52,
11.86,11.14,11.21, 9.38,10.74,
11.54,9.75,11.26,11.40, 8.98,
10.29,7.92,9.77,8.85,10.29,
10.17, 8.97,9.94,10.06,9.79,
9.91,9.77, 8.98, 8.14, 9.29,
9.38,8.83,10.43,
9.,7.,5.,3.,1.,0.01,
slim = .05,
$end
```


IFA-432 Rod 1 Case

* GOESINS:

```
FILE05='nullfile', STATUS='scratch', FORM='FORMATTED',
    CARRIAGE CONTROL='LIST'
*
* GOESOUTS:
FILE06='out432r1.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='plot432r1.n', STATUS='UNKNOWN', FORM='FORMATTED'
/***************************************************************************
            ifa 432 rod 1
    $frpcn
    im=44, na=4, nr=11,
    ngasr = 45,
    $end
    $frpcon
    cpl = 2.0, dco = 0.5035 thkcld = 0.037,gadoln=0.0
    den = 95.5, thkgap=0.0045, rc = 0.0345, dspg = 0.35,
    dspgw = 0.03, enrch = 10.0,fgpav = 14.7, hplt = 0.5, icm = 2,
    icor = 0, idxgas = 1, iplant = -4, iq = 0,fa = 1., cldwks=0.0
    totl = 1.9, roughc = 2.5e-5, roughf = 8.5e-5, vs = 5.0,
    nunits = 1, rsntr = 75.,pitch = 0.56, nplot=1,
    flux = 5*5.0e15, p2(1) = 500., tw(1) = 464., go(1) = 0.0,
    jdlpr = 0, jn(1) = 5,5,5,5,5,5,5,5,
    jst(1) = 1,1,1,1,1,1,1,6,3,3,2,2,1,4,5,5,
    6,3,3,2,2,5,2,5,2,2,1,4,5,7,7,7,8,4,4,4,4,4,
    6*4
    qf(1)=1.156,1.156,1.0,0.844,0.844,
    x(1)= 0.0, 0.5,1.0,1.5,1.9,
    qf(6)=1.1696,1.1696,1.0,0.8304,0.8304,
    x(6) = 0.0, 0.5,1.0,1.5,1.9,
    qf(11)=1.1905,1.1905,1.0,0.8095,0.8095,
    x(11) = 0.0, 0.5,1.0,1.5,1.9,
    qf(16)=1.105,1.105,1.00,0.895,0.895,
    x(16)= 0.0, 0.5,1.0,1.5,1.9,
    qf(21)=1.1364,1.1364,1.,0.8636,0.8636,
    x(21) = 0.0, 0.5,1.0,1.5,1.9,
    qf(26)=1.2195,1.2195,1.0,0.7805,0.7805,
    x(26)= 0.0,0.5,1.0,1.5,1.9,
    qf(31)=1.1236,1.1236,1.0,0.8764,0.8764,
```

```
x(31) = 0.0, 0.5,1.0,1.5,1.9,
qf(36)=1.087,1.087,1.0,0.913,0.913,
x(36) = 0.0, 0.5,1.0,1.5,1.9,
ProblemTime = 0.1,0.2,0.3,0.4,0.5,
7., 23., 41.,63.,
91.,104.,129.,154.,159.,
170.,213.,218.,228.,260.,
300.,310.,320.,350.,370.,
374.,400.,450.,465.,498.,
550.,600.,605.,615.,640.,650.,
700.,725.,759.,
760., 761.,762.,763., 764., 765.
qmpy = 1.,3.,5.,7.,9.,
11.87,11.74,11.00,11.78,11.52,
11.86,11.14,11.21, 9.38,10.74,
11.54,9.75,11.26,11.40, 8.98,
10.29,7.92,9.77,8.85,10.29,
10.17, 8.97,9.94,10.06,9.79,
9.91,9.77, 8.98, 8.14, 9.29,
9.38,8.83,10.43,
9.,7.,5.,3.,1.,0.01,
slim = .05,
$end
```


IFA-432 Rod 2 BOL Lower Thermocouple Case

* GOESINS:

```
FILE05='nullfile', STATUS='scratch', FORM='FORMATTED',
    CARRIAGE CONTROL='LIST'
*
* GOESOUTS:
FILE06='out432r2BOLlower.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='plot432r2BOLlower.n', STATUS='UNKNOWN', FORM='FORMATTED'
/***********************************************************************
    ifa 432 rod 2
$frpcn
im=10, na=4, nr=11,
ngasr = 45,
$end
$frpcon
cpl = 2.0, dco = 0.5035, thkcld=0.037,
den = 95.5, thkgap=0.0075, rc = 0.0345, dspg = 0.35,
dspgw = 0.03, enrch = 10.,fgpav = 14.7, hplt = 0.5, icm = 2,
icor = 0, idxgas =1, iplant = -4, iq = 0,nplot=1,
totl = 1.9, roughc = 2.5e-5, roughf = 8.5e-5, vs = 5.0,
nunits = 1, rsntr = 75.,fa=1., pitch=0.56,
flux = 5*5.0e15, p2(1) = 500., tw(1) = 464., go(1) = 0.0,
jdlpr = 0, jn(1) = 5,5,5,5,5,5,5,5,
    jst(1) = 10*1,1,1,1,
    1,1,1,6,3,3,
    2,2,1,4,5,5,
    6,3,3,2,2,5,
    2,5,2,2,1,4,
    5,7,7,7,8,4,
    4,4,4,4
qf(1)=1.0,1.0,1.0,1.0,1.0,
x(1)=0.0, 0.5,1.0,1.5,1.9,
```

```
qf(6)=1.1696,1.1696,1.0,0.8304,0.8304,
x(6)=0.0, 0.5,1.0,1.5,1.9,
qf(11)=1.1905,1.1905,1.0,0.8095,0.8095,
x(11)= 0.0, 0.5,1.,1.5,1.9,
qf(16)=1.105,1.105,1.00,0.895,0.895,
x(16)=0.0, 0.5,1.0,1.5,1.9,
qf(21)=1.1364,1.1364,1.,0.8636,0.8636,
x(21)=0.0, 0.5,1.0,1.5,1.9,
qf(26)=1.2195,1.2195,1.0,0.7805,0.7805,
x(26) = 0.0,0.5,1.0,1.5,1.9,
qf(31)=1.1236,1.1236,1.0,0.8764,0.8764,
x(31)=0.0, 0.5,1.0,1.5,1.9,
qf(36)=1.087,1.087,1.0,0.913,0.913,
x(36) = 0.0, 0.5,1.0,1.5,1.9,
ProblemTime = 0.1,0.2,0.3,0.4,0.5,
0.6,0.7,0.8,0.9,1.0
7., 23., 41.,63.,
91.,104.,129.,154.,159.,
170.,213.,218.,228.,260.,
300.,310.,320.,350., 370.,
374.,400.,450.,465.,498.,
550.,600.,605.,615.,640.,
650.,700.,725.,759.,810.,
864.,888.,950.,1017.,1022.,
1027.,1075.,1094.
qmpy = 1.52,2.29,3.05,3.82,4.58,
5.36,6.12,6.88,7.62,8.25,
12.54,12.54,11.00,11.78,
11.52,11.86,11.14,11.21, 9.38,
10.74,11.54, 9.78,10.08,10.08,
    8.98,10.29, 7.92, 9.77, 8.85,
10.29,10.17, 8.97, 9.94,10.34,
10.07, 9.91, 9.77, 8.98, 8.14,
    9.29, 9.38, 8.83,10.43,10.43,
    8.36, 9.24, 6.56, 6.56, 8.40,
10.56, 9.84, 7.04
    slim = .05,
$end
```


IFA-432 Rod 3 BOL Upper Thermocouple Case

* GOESINS:

```
FILE05='nullfile', STATUS='scratch', FORM='FORMATTED',
                        CARRIAGE CONTROL='LIST'
*
* GOESOUTS:
FILE06='out432r3BOLupper.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='plot432r3BOLupper.n', STATUS='UNKNOWN', FORM='FORMATTED'
/**********************************************************************
    ifa 432 rod 3
$frpcn
im=6, na=4, nr=11,
ngasr = 45,
$end
$frpcon
cpl = 2.0, dco = 0.5035 thkcld = 0.037,
den = 95.5, thkgap=0.0015, rc = 0.0345, dspg = 0.35,
dspgw = 0.03, enrch = 10.0,fgpav = 14.7, hplt = 0.5, icm = 2,
```

```
icor = 0, idxgas = 1, iplant = -4, iq = 0,fa = 1.,pitch = 0.56,
totl = 1.9, roughc = 2.5e-5, roughf = 8.5e-5, vs = 5.0,
nunits = 1, rsntr = 75.,nplot=1,
flux = 5*5.0e15, p2(1) = 500., tw(1) = 464., go(1) = 0.0,
jdlpr = 0, jn(1) = 5,5,5,5,5,5,5,5,
jst(1) = 6*1,1,1,1,
1,1,1,6,3,3,
2,3,1,4,5,5,
6,3,3,2,2,5,
2,5,2,2,1,4,
4,4,7,7,8,4,
4,4,4,4,4,5,5,
6,6,6,5,6,5
qf(1)=1.0,1.0,1.0,1.0,1.0,
x(1)= 0.0, 0.5,1.0,1.5,1.9,
qf(6)=1.1696,1.1696,1.0,0.8304,0.8304,
x(6) = 0.0, 0.5,1.0,1.5,1.9,
qf(11)=1.1905,1.1905,1.0,0.8095,0.8095,
x(11)=0.0, 0.5,1.0,1.5,1.9,
qf(16)=1.105,1.105,1.00,0.895,0.895,
x(16)=0.0, 0.5,1.0,1.5,1.9,
qf(21)=1.1364,1.1364,1.,0.8636,0.8636,
x(21) = 0.0, 0.5,1.0,1.5,1.9,
qf(26)=1.2195,1.2195,1.0,0.7805,0.7805,
x(26) = 0.0,0.5,1.0,1.5,1.9,
qf(31)=1.1236,1.1236,1.0,0.8764,0.8764,
x(31)=0.0, 0.5,1.0,1.5,1.9,
qf(36)=1.087,1.087,1.0,0.913,0.913,
x(36) = 0.0, 0.5,1.0,1.5,1.9,
ProblemTime = 0.1,0.2,0.3,0.4,0.5,0.6
7., 23., 41.,63.,
91.,104.,129.,154.,170.,
180.,200.,218.,235.,260.,
300.,310.,320.,350.,370.,
384.,400.,450.,470.,505.,
550.,600.,605.,620.,640.,
650.,680.,725.,770., 800.,
850.,865.,900.,960.,968.,
975.,989.,1007.
qmpy = 1.52,3.05,4.57,6.1,7.62,9.14,
12.54,12.54,11.00,11.78
11.52,11.86,11.14,11.21, 9.38,
10.74,11.54,9.78,10.08,10.40,
8.98,10.29,7.92,9.77,9.77,8.85,
10.29,10.17, 8.97,9.94,10.34,
10.07,9.91,9.77, 8.98, 8.14,
9.29,9.38,8.83,10.5,9.7,
9.1,9.24,6.56,6.56,8.40,
10.56,9.84,7.04
slim = .05,
$end
```


IFA-432 Rod 3 BOL Lower Thermocouple Case

* GOESINS:

FILE05='nullfile', STATUS='scratch', FORM='FORMATTED', CARRIAGE CONTROL='LIST'

```
* GOESOUTS:
FILE06='out432r3BOLlower.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='plot432r3BOLlower.n', STATUS='UNKNOWN', FORM='FORMATTED'
/************************************************************************
ifa 432 rod 3
$frpcn
im=10, na=4, nr=11,
ngasr = 45,
$end
$frpcon
cpl = 2.0, dco = 0.5035 thkcld = 0.037,
den = 95.5, thkgap=0.0015, rc = 0.0345, dspg = 0.35,
dspgw = 0.03, enrch = 10.0,fgpav = 14.7, hplt = 0.5, icm = 2,
icor = 0, idxgas = 1, iplant = -4, iq = 0,fa = 1.,pitch = 0.56,
totl = 1.9, roughc = 2.5e-5, roughf = 8.5e-5, vs = 5.0,
nunits = 1, rsntr = 75.,nplot=1,
flux = 5*5.0e15, p2(1) = 500., tw(1) = 464., go(1) = 0.0,
jdlpr = 0, jn(1) = 5,5,5,5,5,5,5,5,
jst(1) = 10*1,1,1,1,
1,1,1,6,3,3,
2,3,1,4,5,5,
6,3,3,2,2,5,
2,5,2,2,1,4,
4,4,7,7,8,4,
4,4,4,4,4,5,5,
6,6,6,5,6,5
qf(1)=1.0,1.0,1.0,1.0,1.0,
x(1)= 0.0, 0.5,1.0,1.5,1.9,
qf(6)=1.1696,1.1696,1.0,0.8304,0.8304,
x(6) = 0.0, 0.5,1.0,1.5,1.9,
qf(11)=1.1905,1.1905,1.0,0.8095,0.8095,
x(11)= 0.0, 0.5,1.0,1.5,1.9,
qf(16)=1.105,1.105,1.00,0.895,0.895,
x(16)=0.0, 0.5,1.0,1.5,1.9,
qf(21)=1.1364,1.1364,1.,0.8636,0.8636,
x(21)= 0.0, 0.5,1.0,1.5,1.9,
qf(26)=1.2195,1.2195,1.0,0.7805,0.7805,
x(26)= 0.0,0.5,1.0,1.5,1.9,
qf(31)=1.1236,1.1236,1.0,0.8764,0.8764,
x(31) = 0.0, 0.5,1.0,1.5,1.9,
qf(36)=1.087,1.087,1.0,0.913,0.913,
x(36)=0.0, 0.5,1.0,1.5,1.9,
ProblemTime = 0.1,0.2,0.3,0.4,0.5,0.6
0.7,0.8,0.9,1.0
7., 23., 41.,63.,
91.,104.,129.,154.,170.,
180.,200.,218.,235.,260.,
300.,310.,320.,350.,370.,
384.,400.,450.,470.,505.,
550.,600.,605.,620.,640.,
650.,680.,725.,770.,800.,
850.,865.,900.,960.,968.,
975.,989.,1007.
qmpy = 1.52,2.28,3.05,3.82,4.58,5.36,6.12,
6.88,7.64,8.4,
12.54,12.54,11.00,11.78
11.52,11.86,11.14,11.21, 9.38,
```

```
10.74,11.54,9.78,10.08,10.40,
8.98,10.29,7.92,9.77,9.77,8.85,
10.29,10.17, 8.97,9.94,10.34,
10.07,9.91,9.77, 8.98, 8.14,
9.29,9.38,8.83,10.5,9.7,
9.1,9.24,6.56,6.56,8.40,
10.56,9.84,7.04
slim = .05,
$end
```


IFA-432 Rod 3 Case

* GOESINS:

FILE05='nullfile', STATUS='scratch', FORM='FORMATTED', CARRIAGE CONTROL='LIST'
*

* GOESOUTS:

FILE06='out432r3.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='plot432r3.n', STATUS='UNKNOWN', FORM='FORMATTED'
 ifa $432 \operatorname{rod} 3$
\$frpen
im=47, na=4, nr=11,
ngasr $=45$,
\$end
\$frpcon
cpl $=2.0, \mathrm{dco}=0.5035$ thkcld $=0.037$,
den $=95.5$, thkgap=0.0015, rc $=0.0345, \mathrm{dspg}=0.35$,
dspgw $=0.03$, enrch $=10.0$, fgpav $=14.7$, hplt $=0.5, i \mathrm{~cm}=2$,
icor $=0$, idxgas $=1$, iplant $=-4$, iq $=0$,fa $=1 .$, pitch $=0.56$,
totl $=1.9$, roughc $=2.5 e-5$, roughf $=8.5 e-5$, vs $=5.0$,
nunits $=1$, rsntr $=75 .$, nplot $=1$,
flux $=5 * 5.0 \mathrm{e} 15, \mathrm{p} 2(1)=500 ., \mathrm{tw}(1)=464 ., \mathrm{go}(1)=0.0$,
jdlpr $=0, j n(1)=5,5,5,5,5,5,5,5$,
jst(1) = 1,1,1,1,
$1,1,1,6,3,3$,
$2,3,1,4,5,5$,
$6,3,3,2,2,5$,
2,5,2,2,1,4,
$4,4,7,7,8,4$,
$4,4,4,4,4,5,5$,
$6,6,6,5,6,5$
$\mathrm{qf}(1)=1.156,1.156,1.0,0.844,0.844$,
$x(1)=0.0,0.5,1.0,1.5,1.9$,
$q f(6)=1.1696,1.1696,1.0,0.8304,0.8304$,
$x(6)=0.0,0.5,1.0,1.5,1.9$,
$q f(11)=1.1905,1.1905,1.0,0.8095,0.8095$,
$x(11)=0.0,0.5,1.0,1.5,1.9$,
$q f(16)=1.105,1.105,1.00,0.895,0.895$,
$x(16)=0.0,0.5,1.0,1.5,1.9$,
$q f(21)=1.1364,1.1364,1 ., 0.8636,0.8636$,
$x(21)=0.0,0.5,1.0,1.5,1.9$,
$\mathrm{qf}(26)=1.2195,1.2195,1.0,0.7805,0.7805$,
$x(26)=0.0,0.5,1.0,1.5,1.9$,
$q f(31)=1.1236,1.1236,1.0,0.8764,0.8764$,
$x(31)=0.0,0.5,1.0,1.5,1.9$,
$q f(36)=1.087,1.087,1.0,0.913,0.913$,

```
x(36) = 0.0, 0.5,1.0,1.5,1.9,
ProblemTime = 0.1,0.2,0.3,0.4,0.5,
7., 23., 41.,63.,
91.,104.,129.,154.,170.,
180.,200.,218.,235.,260.,
300.,310.,320.,350.,370.,
384.,400.,450.,470.,505.,
550.,600.,605.,620.,640.,
650.,680.,725.,770., 800.,
850.,865.,900.,960.,968.,
975.,989.,1007.
qmpy = 1.,3.,5.,7.,9.,
12.54,12.54,11.00,11.78
11.52,11.86,11.14,11.21, 9.38,
10.74,11.54,9.78,10.08,10.40,
8.98,10.29,7.92,9.77,9.77,8.85,
10.29,10.17, 8.97,9.94,10.34,
10.07,9.91,9.77, 8.98, 8.14,
9.29,9.38,8.83,10.5,9.7,
9.1,9.24,6.56,6.56,8.40,
10.56,9.84,7.04
slim = .05,
$end
```


A. 2 Halden IFA-513 Rods

The IFA-513 test fuel assembly (Bradley et al. 1981) was irradiated in the Halden reactor in Norway from November 1978 to mid-1981 under a continuation of an NRC program to test the performance of BWR-6 type fuel and the effects of fission gas contamination of the helium fill gas.

Rods 1 and 6 both had typical high-density (95 percent TD) stable sintered uranium dioxide $\left(\mathrm{UO}_{2}\right)$ fuel pellets. Rod 1 had helium fill gas at one atmosphere while rod 6 had 23 percent xenon and 77percent helium fill gas at one atmosphere. Data taken from rod 1 upper and lower thermocouple and rod 6 upper and lower thermocouple during the first ramp to power were used in the BOL temperature assessment. Data from the rod 1 upper and lower thermocouple and the rod 6 upper and lower thermocouple were used in the temperature assessment as a function of burnup.

The input files used for the assessments listed in Table 2.1 are shown below.

IFA-513 Rod 1 BOL Upper Thermocouple Case

```
* GOESINS:
FILE05='nullfile', STATUS='scratch', FORM='FORMATTED',
    CARRIAGE CONTROL='LIST'
*
* GOESOUTS:
FILE06='out513r1BOLupper.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='plot513r1BOLupper.n', STATUS='UNKNOWN', FORM='FORMATTED'
/************************************************************************
    ifa 513 rod 1
    $frpcn
    im=8, na=5, nr=10,
    ngasr = 45,
    $end
    $frpcon
    cpl = 1.14, dco = 0.5035, thkcld = 0.0372,
    den = 95.5, thkgap = 0.00425, rc = 0.0345, dspg = 0.42,
    dspgw = 0.04, enrch = 9.9,fgpav = 14.7, hplt = 0.5, hdish= 0.0,
    icm = 2, icor = 0, idxgas = 1, iplant = -4, iq = 0,nplot=1,
    jdlpr = 0, jn(1) = 6,6,6,6,6,
    jst(1) = 10*1, 4*2, 4*3, 4*2, 4*4, 4*5,
    totl = 2.56, roughc = 4.5e-5, roughf = 8.5e-5, vs = 5.0,
    nunits = 1, rsntr = 75.,fa= 1., pitch=0.56,
    flux = 6*5.0e15, p2(1) = 500., tw(1) = 459., go(1) = 0.0,
    qf(1)=1.0,1.0, 1.0, 1.0, 1.0,1.0
    x(1)=0.0, 0.5, 1.0, 1.5, 2.0, 2.56
    qf(7)=1.13, 1.13, 1.0, 1.0, 0.87, 0.87,
    x(7) =0.0, 0.5, 1.0, 1.5, 2.0, 2.56
    qf(13)=1.07, 1.07, 1.0, 1.0, 0.93, 0.93,
    x(13)=0.0, 0.5, 1.0, 1.5, 2.0, 2.56
    qf(19)=1.05, 1.05, 1.0, 1.0, 0.95, 0.95,
    x(19) = 0.0, 0.5, 1.0, 1.5, 2.0, 2.56
    qf(25)=1.02, 1.02, 1.0, 1.0, 0.98, 0.98
    x(25) = 0.0, 0.5, 1.0, 1.5, 2.0, 2.56
    ProblemTime =
    0.1, 0.2, 0.3, 0.4,0.5,0.6,0.7,0.8,
    3.1, 7., 15, 18,
    34, 37, 40, 45, 60,
    72, 77, 81, 83, 90.,
```

```
100., 105, 110.,115.,120,
139, 148, 158, 170., 176
qmpy =
1.16,3.48,5.8,8.12,10.44,12.76,13.92,16.24,
11.06, 11.06, 12.2, 11.2, 9.1,
9.6, 6.2, 10.4, 10.4, 10.3,
10.3, 4.3, 8.7, 10.4, 10.4,
10.4, 10.4, 9.5, 10.6, 10.6,
10.6, 10.3, 10.6, 10.1, 10.1
$end
```


IFA-513 Rod 1 BOL Lower Thermocouple Case

```
* GOESINS:
```

FILE05='nullfile', STATUS='scratch', FORM='FORMATTED',
CARRIAGE CONTROL='LIST'
*

* GOESOUTS:
FILE06='out513r1BOLlower.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='plot513r1BOLlower.n', STATUS='UNKNOWN', FORM='FORMATTED'
/ **)
ifa 513 rod 1
\$frpen
im=9, na=5, nr=10,
ngasr $=45$,
\$end
\$frpcon
$\mathrm{cpl}=1.14, \mathrm{dco}=0.5035$, thkcld $=0.0372$,
den $=95.5$, thkgap $=0.00425, \mathrm{rc}=0.0345, \mathrm{dspg}=0.42$,
dspgw = 0.04, enrch = 9.9,fgpav = 14.7, hplt = 0.5, hdish= 0.0,
icm $=2$, icor $=0$, idxgas $=1, i p l a n t=-4, i q=0, n p l o t=1$,
jdlpr $=0, j n(1)=6,6,6,6,6$,
jst(1) $=10 * 1,4 * 2,4 * 3,4 * 2,4 * 4,4 * 5$,
totl $=2.56$, roughc $=4.5 e-5$, roughf $=8.5 e-5$, vs $=5.0$,
nunits $=1$, rsntr $=75 .$, fa= 1., pitch=0.56,
flux $=6 * 5.0 e 15, \mathrm{p} 2(1)=500 ., \operatorname{tw}(1)=459 ., \mathrm{go}(1)=0.0$,
$q f(1)=1.0,1.0,1.0,1.0,1.0,1.0$
$x(1)=0.0,0.5,1.0,1.5,2.0,2.56$
$\mathrm{qf}(7)=1.13,1.13,1.0,1.0,0.87,0.87$,
$x(7)=0.0,0.5,1.0,1.5,2.0,2.56$
$q f(13)=1.07,1.07,1.0,1.0,0.93,0.93$,
$x(13)=0.0,0.5,1.0,1.5,2.0,2.56$
$q f(19)=1.05,1.05,1.0,1.0,0.95,0.95$,
$x(19)=0.0,0.5,1.0,1.5,2.0,2.56$
$q f(25)=1.02,1.02,1.0,1.0,0.98,0.98$
$x(25)=0.0,0.5,1.0,1.5,2.0,2.56$
ProblemTime =
$0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9$
3.1, 7., 15, 18,
34, 37, 40, 45, 60,
72, 77, 81, 83, 90.,
100., 105, 110.,115.,120,
139, 148, 158, 170., 176
qmpy =
$0.84,2.52,4.2,5.88,7.56,9.24,10.08,11.76,12.6$,
11.06, 11.06, 12.2, 11.2, 9.1,
9.6, 6.2, 10.4, 10.4, 10.3,

```
10.3, 4.3, 8.7, 10.4, 10.4,
```

$10.4,10.4,9.5,10.6,10.6$,
10.6, 10.3, 10.6, 10.1, 10.1
\$end

IFA-513 Rod 1 Case

* GOESINS:

FILE05='nullfile', STATUS='scratch', FORM='FORMATTED', CARRIAGE CONTROL='LIST'
\star

* GOESOUTS:

FILE06='out513r1.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='plot513r1.n', STATUS='UNKNOWN', FORM='FORMATTED'

ifa 513 rod 1
\$frpen
im=30, na=5, nr=10,
ngasr = 45,
\$end
\$frpcon
$\mathrm{cpl}=1.14, \mathrm{dco}=0.5035$, thkcld $=0.0372$,
den $=95.5$, thkgap $=0.00425$, rc $=0.0345$, dspg $=0.42$,
dspgw $=0.04$, enrch $=9.9, f g p a v=14.7, h p l t=0.5$, hdish= 0.0 ,
icm $=2$, icor $=0$, idxgas $=1$, iplant $=-4$, iq $=0, n p l o t=1$,
jdlpr $=0, j n(1)=6,6,6,6,6$,
jst (1) $=10 * 1,4 * 2,4 * 3,4 * 2,4 * 4,4 * 5$,
totl $=2.56$, roughc $=4.5 e-5$, roughf $=8.5 e-5, \mathrm{vs}=5.0$,
nunits $=1$, rsntr $=75 .$, fa= 1., pitch=0.56,
flux $=6 * 5.0 e 15, \mathrm{p} 2(1)=500 ., \operatorname{tw}(1)=459 ., \mathrm{go}(1)=0.0$,
$q f(1)=1.16,1.16,1.0,1.0,0.84,0.84$
$x(1)=0.0,0.5,1.0,1.5,2.0,2.56$
$\mathrm{qf}(7)=1.13,1.13,1.0,1.0,0.87,0.87$,
$x(7)=0.0,0.5,1.0,1.5,2.0,2.56$
$q f(13)=1.07,1.07,1.0,1.0,0.93,0.93$,
$x(13)=0.0,0.5,1.0,1.5,2.0,2.56$
$q f(19)=1.05,1.05,1.0,1.0,0.95,0.95$,
$x(19)=0.0,0.5,1.0,1.5,2.0,2.56$
$q f(25)=1.02,1.02,1.0,1.0,0.98,0.98$
$x(25)=0.0,0.5,1.0,1.5,2.0,2.56$
ProblemTime =
$0.01,0.1,0.2,0.3,0.4$,
0.7, 3.1, 7., 15, 18,

34, 37, 40, 45, 60,
72, 77, 81, 83, 90.,
100., 105, 110.,115.,120,

139, 148, 158, 170., 176
qmpy =
1., 3., 5., 7., 9.0,
11.06, 11.06, 12.2, 11.2, 9.1,
9.6, 6.2, 10.4, 10.4, 10.3,
10.3, 4.3, 8.7, 10.4, 10.4,
10.4, 10.4, 9.5, 10.6, 10.6,
10.6, 10.3, 10.6, 10.1, 10.1
\$end

IFA-513 Rod 6 BOL Upper Thermocouple Case

* GOESINS:

FILE05='nullfile', STATUS='scratch', FORM='FORMATTED',
CARRIAGE CONTROL='LIST'
\star

* GOESOUTS:

FILE06='out513r6BOLupper.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='plot513r6BOLupper.n', STATUS='UNKNOWN', FORM='FORMATTED'
ifa 513 rod 6
\$frpcn
im=7, na=5, nr=17,
ngasr $=45$,
\$end
\$frpcon
$\mathrm{cpl}=1.14, \mathrm{dco}=0.5035$, thkcld $=0.0372$,
den $=95.5$, thkgap $=0.00425$, rc $=0.0345$, dspg $=0.42$,
dspgw $=0.04$, enrch $=9.9$, fgpav $=14.7$, hplt $=0.5$, hdish= 0.0 ,
icm $=2$, icor $=0$, idxgas $=6, f a=1 .$, pitch=0.56,
amfhe=0.77, amfxe=0.23, nplot=1,
iplant $=-4, ~ i q=0$,
jdlpr $=0, j n(1)=6,6,6,6,6,6,6$,
jst(1) $=10 * 1,4 * 2,4 * 3,4 * 2,4 * 4,1 * 5,1 * 6,2 * 7$,
totl $=2.56$, roughc $=4.5 e-5$, roughf $=8.5 e-5, \mathrm{vs}=5.0$,
nunits $=1$, rsntr $=75$. ,
flux $=6 * 5.0 \mathrm{e} 15, \mathrm{p} 2(1)=500 ., \operatorname{tw}(1)=459 ., \mathrm{go}(1)=0.0$,
$\mathrm{qf}(1)=1.0,1.0,1.0,1.0,1.0,1.0$
$x(1)=0.0,0.5,1.0,1.5,2.0,2.56$
$\mathrm{qf}(7)=1.13,1.13,1.0,1.0,0.87,0.87$,
$x(7)=0.0,0.5,1.0,1.5,2.0,2.56$
$q f(13)=1.07,1.07,1.0,1.0,0.93,0.93$,
$x(13)=0.0,0.5,1.0,1.5,2.0,2.56$
$q f(19)=1.05,1.05,1.0,1.0,0.95,0.95$,
$x(19)=0.0,0.5,1.0,1.5,2.0,2.56$
$q f(25)=1.02,1.02,1.0,1.0,0.98,0.98$,
$x(25)=0.0,0.5,1.0,1.5,2.0,2.56$,
$q f(31)=1.02,1.02,1.0,1.0,0.87,0.87$,
$x(31)=0.0,0.5,1.0,1.5,2.0,2.56$,
$q f(37)=1.02,1.02,1.0,1.0,0.93,0.93$,
$\mathrm{x}(37)=0.0,0.5,1.0,1.5,2.0,2.56$,
ProblemTime =
$0.1,0.2,0.3,0.4,0.5,0.6,0.7$,
3.1, 7., 15, 18,
34, 37, 40, 45, 60,
72, 77, 81, 83, 90.,
100., 105, 110.,115.,120,
139, 148, 158, 170., 176
qmpy =
$1.16,3.48,5.8,8.12,10.44,12.76,15.08$,
$11.06,11.06,12.2,11.2,9.1$,
10, 6.2, 10.4, 10.4, 10.3,
10.3, 4.3, 8.7, 10.4, 10.4,
10.4, 10.6, 9.5, 10.9, 11.,
10.7, 10.2, 10.9 9.9, 9.9
\$end

IFA-513 Rod 6 BOL Lower Thermocouple Case

```
GOESINS :
FILE05='nullfile', STATUS='scratch', FORM='FORMATTED',
    CARRIAGE CONTROL='LIST'
*
* GOESOUTS:
FILE06='out513r6BOLlower.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='plot513r6BOLlower.n', STATUS='UNKNOWN', FORM='FORMATTED'
/**********************************************************************
            ifa 513 rod 6
    $frpcn
    im=8, na=5, nr=17,
    ngasr = 45,
    $end
    $frpcon
    cpl = 1.14, dco = 0.5035, thkcld = 0.0372,
    den = 95.5, thkgap = 0.00425, rc = 0.0345, dspg = 0.42,
    dspgw = 0.04, enrch = 9.9,fgpav = 14.7, hplt = 0.5, hdish= 0.0,
    icm = 2, icor = 0, idxgas = 6,fa=1., pitch=0.56,
    amfhe=0.77, amfxe=0.23, nplot=1,
    iplant = -4, iq = 0,
    jdlpr = 0, jn(1) = 6,6,6,6,6,6,6,
    jst(1) = 10*1, 4*2, 4*3, 4*2, 4*4, 1*5,1*6,2*7,
    totl = 2.56, roughc = 4.5e-5, roughf = 8.5e-5, vs = 5.0,
    nunits = 1, rsntr = 75.,
    flux = 6*5.0e15, p2(1) = 500., tw(1) = 459., go(1)=0.0,
    qf(1)=1.0,1.0, 1.0, 1.0, 1.0, 1.0
    x(1)=0.0, 0.5, 1.0, 1.5, 2.0, 2.56
    qf(7)=1.13, 1.13, 1.0, 1.0, 0.87, 0.87,
    x(7) =0.0, 0.5, 1.0, 1.5, 2.0, 2.56
    qf(13)=1.07, 1.07, 1.0, 1.0, 0.93, 0.93,
    x(13) = 0.0, 0.5, 1.0, 1.5, 2.0, 2.56
    qf(19)=1.05, 1.05, 1.0, 1.0, 0.95, 0.95,
    x(19) = 0.0, 0.5, 1.0, 1.5, 2.0, 2.56
    qf(25)=1.02, 1.02, 1.0, 1.0, 0.98, 0.98,
    x(25) = 0.0, 0.5, 1.0, 1.5, 2.0, 2.56,
    qf(31)=1.02, 1.02, 1.0, 1.0, 0.87, 0.87,
    x(31)=0.0, 0.5,1.0,1.5,2.0,2.56,
    qf (37) =1.02,1.02,1.0, 1.0, 0.93, 0.93,
    x(37) = 0.0, 0.5,1.0,1.5,2.0,2.56,
    ProblemTime =
    0.1,0.2, 0.3, 0.4,0.5,0.6,0.7,0.8
    3.1, 7., 15, 18,
    34, 37, 40, 45, 60,
    72, 77, 81, 83, 90.,
    100., 105, 110.,115.,120,
    139, 148, 158, 170., 176
    qmpy =
    0.84,2.52,4.2,5.88,7.56,9.24,10.92,12.6,
    11.06, 11.06, 12.2, 11.2, 9.1,
    10, 6.2, 10.4, 10.4, 10.3,
    10.3, 4.3, 8.7, 10.4, 10.4,
    10.4, 10.6, 9.5, 10.9, 11.,
    10.7, 10.2, 10.9 9.9, 9.9
    $end
```


IFA-513 Rod 6 Case

* GOESINS:

FILE05='nullfile', STATUS='scratch', FORM='FORMATTED', CARRIAGE CONTROL='LIST'
*

* GOESOUTS:

FILE06='out513r6.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='plot513r6.n', STATUS='UNKNOWN', FORM='FORMATTED'

ifa 513 rod 6
\$frpen
im=30, na=5, nr=17,
ngasr = 45,
\$end
\$frpcon
$\mathrm{cpl}=1.14, \mathrm{dco}=0.5035$, thkcld $=0.0372$,
den $=95.5$, thkgap $=0.00425$, rc $=0.0345$, dspg $=0.42$,
dspgw $=0.04$, enrch $=9.9$, fgpav $=14.7$, hplt $=0.5$, hdish= 0.0 ,
icm $=2$, icor $=0$, idxgas $=6, f a=1 .$, pitch=0.56,
amfhe=0.77, amfxe=0.23, nplot=1,
iplant $=-4$, iq $=0$,
jdlpr $=0, j n(1)=6,6,6,6,6,6,6$,
jst(1) $=10 * 1,4 * 2,4 * 3,4 * 2,4 * 4,1 * 5,1 * 6,2 * 7$,
totl $=2.56$, roughc $=4.5 e-5$, roughf $=8.5 e-5, \mathrm{vs}=5.0$,
nunits $=1$, rsntr $=75$. ,
flux $=6 * 5.0 \mathrm{e} 15, \mathrm{p} 2(1)=500 ., \operatorname{tw}(1)=459 ., \mathrm{go}(1)=0.0$,
$\mathrm{qf}(1)=1.16,1.16,1.0,1.0,0.84,0.84$
$x(1)=0.0,0.5,1.0,1.5,2.0,2.56$
$\mathrm{qf}(7)=1.13,1.13,1.0,1.0,0.87,0.87$,
$x(7)=0.0,0.5,1.0,1.5,2.0,2.56$
$q f(13)=1.07,1.07,1.0,1.0,0.93,0.93$,
$x(13)=0.0,0.5,1.0,1.5,2.0,2.56$
$q f(19)=1.05,1.05,1.0,1.0,0.95,0.95$,
$x(19)=0.0,0.5,1.0,1.5,2.0,2.56$
$q f(25)=1.02,1.02,1.0,1.0,0.98,0.98$,
$x(25)=0.0,0.5,1.0,1.5,2.0,2.56$,
$q f(31)=1.02,1.02,1.0,1.0,0.87,0.87$,
$x(31)=0.0,0.5,1.0,1.5,2.0,2.56$,
$q f(37)=1.02,1.02,1.0,1.0,0.93,0.93$,
$\mathrm{x}(37)=0.0,0.5,1.0,1.5,2.0,2.56$,
ProblemTime =
$0.01,0.1,0.2,0.3,0.4$,
0.7, 3.1, 7., 15, 18,

34, 37, 40, 45, 60,
72, 77, 81, 83, 90.,
100., 105, 110.,115.,120,

139, 148, 158, 170., 176
qmpy =
1., 3., 5., 7., 9.0,
11.06, 11.06, 12.2, 11.2, 9.1,

10, 6.2, 10.4, 10.4, 10.3,
10.3, 4.3, 8.7, 10.4, 10.4,
10.4, 10.6, 9.5, 10.9, 11.,
10.7, 10.2, 10.9 9.9, 9.9
\$end

A. 3 Halden IFA-633 Rods

The IFA-633 test assembly consisted of six instrumented rods (three short binderless route (SBR) mixed oxide (MOX) fuel rods and three UO_{2} rods) irradiated from beginning of life through a burnup of 31 gigawatt-days per metric ton of metal (GWd/MTM). Rod 6 (Wright 2004) was the only MOX rod instrumented with both a fuel centerline thermocouple and a pressure transducer such that temperature and fission gas release (FGR) measurements can be compared. Rods 1, 3, and 5 (Rø and Rossiter 2005) were UO_{2} rods instrumented with centerline thermocouples and were used to assess the FRAPCON-3.4 predictions of temperature as a function of linear heat generation rate (LHGR) at BOL. This test assembly experienced a power ramp at a burnup of approximately $20 \mathrm{GWd} / \mathrm{MTM}$ to achieve fission gas bubble interlinkage. The MOX fuel was fabricated with the SBR process with a grain size of 7.5 microns and was typical of commercial fuel.

Rod 6 was used to assess the FRAPCON-3.4 temperature predictions for MOX as a function of burnup and the MOX FGR predictions. The input files used for the MOX temperature and FGR assessments are shown below. The input file that includes the central hole was used for the temperature assessment since the temperature was measured on hollow pellets. The input file that does not include the central hole was used for the FGR assessment since most of the FGR comes from solid pellets. Rods 1,3 , and 5 were used to assess the FRAPCON-3.4 temperature predictions for UO_{2} as a function of LHGR at BOL. These input files are not included in this report due to the limited availability and sensitivity of this information.

A. 4 Halden IFA-677.1 Rods

The high initial rating test, IFA-677.1 (Thérache 2005; Jošek 2008), was loaded in the Halden reactor in December 2004 and had completed six cycles of irradiation under HBWR conditions as of September 2007, achieving a rig average burnup of $30 \mathrm{GWd} / \mathrm{MTU}$. The single cluster contained six rods supplied by Westinghouse, Framatome ANP, and Global Nuclear Fuel (GNF), all fitted with pressure transducers, fuel centerline thermocouples in both ends, and fuel stack elongation detectors, and with a cladding extensometer for one of the rods. The experiment was aimed at investigating the performance of modern fuels subjected to high initial rating with respect to thermal behavior, dimensional changes (densification and swelling), FGR, and pellet/cladding mechanical interaction (PCMI).

Rod 2 (Framatome ANP), rod 3 (GNF), rod 4 (GNF), and rod 6 (Westinghouse) were all used to assess the $\mathrm{BOL} \mathrm{UO}_{2}$ temperature predictions of FRAPCON-3.4 as a function of LHGR. In addition, rod 2 was used to assess the UO_{2} temperature predictions as a function of burnup up to $32 \mathrm{GWd} / \mathrm{MTU}$. The input files used for these assessments are shown below.

```
IFA-677.1 Rod 2 BOL Temperature Case
* GOESINS:
FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
                CARRIAGE CONTROL='NONE'
*
* GOESOUTS:
FILE06='677.1r2.out',
                STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='677.1r2.plot',
                STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'
/***************************************************************************
    IFA-677.1 Rod 2 BOL
    $frpcn
    im=40, nr=17, ngasr=45, na=10
    $end
    $frpcon
    dco=0.4232, thkcld=0.02854, thkgap=0.00335, totl=1.30906, cpl=1.1417
    dspg=0.315, dspgw=0.05, vs=10
    hplt=0.4331, rc=0.0354, hdish=0.0087, dishsd=0.0537
    enrch=4.935, imox=0, comp=0
    fotmtl=2, gadoln=0, ppmh2o=0, ppmn2=0
    den=95.2, deng=0, roughf=0.0000787, rsntr=27.5, tsint=2911
    icm=4, cldwks=0.5, roughc=0.0000197, catexf=0.05, chorg=10
    fgpav=195.8, idxgas=1, nunits=1
iplant=-4, pitch=1.811, icor=0, crdt=0, crdtr=0, flux=11*50000000000000000
    crephr=1, sgapf=31, slim=0.05, qend=0.3
    jdlpr=1, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
    ProblemTime=
    0.05, 0.1, 0.15, 0.2, 0.25
    0.3, 0.35, 0.4, 0.45, 0.5
    0.55, 0.6, 0.65, 0.7, 0.75
    0.8,0.85, 0.9, 0.95, 1
    1.05, 1.1, 1.15, 1.2, 1.25
    1.3, 1.35, 1.4, 1.45, 1.5
    1.55, 1.6, 1.65, 1.7, 1.75
    1.8,1.85, 1.9, 1.95, 2
    qmpy=
```

```
0.112, 0.312, 0.57, 0.884, 1.141
1.399, 1.571, 1.913, 2.085, 2.627
2.969, 3.312, 3.854, 4.228, 4.657
5.113, 5.428, 5.826, 6.14, 6.397
6.742, 7.17, 7.598, 8.143, 8.514
9.198, 9.369, 9.57, 9.798, 10.17
10.456, 10.828, 11.085, 11.54, 11.684
11.942, 12.114, 12.343, 12.457, 13.716
nsp=0
p2=493.13, tw= 455, go= 0
iq=0, fa=1
x(1)=
0, 0.14544, 0.29088, 0.43632, 0.58176
0.7272, 0.87264, 1.01808, 1.16352, 1.30906
qf(1)=
1, 1, 1, 1, 1
1, 1, 1, 1, 1
jn=10
jst=
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
$end
```


IFA-677.1 Rod 3 BOL Temperature Case

* GOESINS:

```
FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
    CARRIAGE CONTROL='NONE'
*
* GOESOUTS:
FILE06='677.1r3.Out',
    STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='677.1r3.plot',
                STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'
/***************************************************************************
    IFA-677.1 Rod 3 BOL
    $frpcn
    im=35, nr=17, ngasr=45, na=10
    $end
    $frpcon
    dco=0.4402, thkcld=0.02815, thkgap=0.00394, totl=1.31037, cpl=1.1969
    dspg=0.315, dspgw=0.05, vs=10
    hplt=0.4094, rc=0.0354, hdish=0, dishsd=0.188
    enrch=4.9, imox=0, comp=0
    fotmtl=2, gadoln=0, ppmh2o=0, ppmn2=0
    den=96.36, deng=0, roughf=0.0000787, rsntr=27.5, tsint=2911
    icm=4, cldwks=0.5, roughc=0.0000197, catexf=0.05, chorg=10
    fgpav=43.51, idxgas=1, nunits=1
    iplant=-4, pitch=1.811, icor=0, crdt=0, crdtr=0, flux=11*50000000000000000
    crephr=1, sgapf=31, slim=0.05, qend=0.3
    jdlpr=1, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
    ProblemTime=
```

```
0.05, 0.1, 0.15, 0.2, 0.25
0.3, 0.35, 0.4, 0.45, 0.5
0.55, 0.6, 0.65, 0.7, 0.75
0.8, 0.85, 0.9, 0.95, 1
1.05, 1.1, 1.15, 1.2, 1.25
1.3, 1.35, 1.4, 1.45, 1.5
1.55, 1.6, 1.65, 1.7, 1.75
qmpy=
0.11, 0.274, 0.548, 0.986, 1.205
1.698, 2.356, 3.013, 3.671, 4.109
4.492, 5.095, 5.807, 6.245, 6.684
7.122, 7.396, 7.999, 8.327, 8.546
8.93, 9.259, 9.916, 10.245, 10.793
11.286, 11.669, 12.107, 12.381, 12.82
13.094, 13.258, 13.313, 13.313, 13.716
nsp=0
p2= 493.13, tw= 455, go= 0
iq=0, fa=1
x(1)=
0, 0.14544, 0.29088, 0.43632, 0.58176
0.7272, 0.87264, 1.01808, 1.16352, 1.31037
qf(1)=
1, 1, 1, 1, 1
1, 1, 1, 1, 1
jn=10
jst=
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
$end
```


IFA-677.1 Rod 4 BOL Temperature Case

* GOESINS:

```
FILEO5='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
```

 CARRIAGE CONTROL='NONE'
 *
* GOESOUTS:
FILE06='677.1r4.out',
STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='677.1r4.plot',
STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'

IFA-677.1 Rod 4 BOL
\$frpcn
im=40, nr=17, ngasr=45, na=10
\$end
\$frpcon
dco=0.4402, thkcld=0.02815, thkgap=0.00394, totl=1.3143, cpl=1.189
dspg=0.315, dspgw=0.05, vs=10
$h p l t=0.4094, r c=0.0354$, hdish=0, dishsd=0.188
enrch=4.9, imox=0, comp=0
fotmtl=2, gadoln=0, ppmh2o=0, ppmn $2=0$
den $=96.36$, deng=0, roughf=0.0000787, rsntr=27.5, tsint=2911

```
icm=4, cldwks=0.5, roughc=0.0000197, catexf=0.05, chorg=10
fgpav=195.8, idxgas=1, nunits=1
iplant=-4, pitch=1.811, icor=0, crdt=0, crdtr=0, flux=11*5000000000000000
crephr=1, sgapf=31, slim=0.05, qend=0.3
jdlpr=1, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
ProblemTime=
0.05, 0.1, 0.15, 0.2, 0.25
0.3,0.35, 0.4, 0.45, 0.5
0.55, 0.6, 0.65, 0.7, 0.75
0.8, 0.85, 0.9, 0.95, 1
1.05, 1.1, 1.15, 1.2, 1.25
1.3, 1.35, 1.4, 1.45, 1.5
1.55, 1.6, 1.65, 1.7, 1.75
1.8, 1.85, 1.9, 1.95, 2
qmpy=
0.055, 0.164, 0.383, 0.712, 1.15
1.26, 1.644, 2.137, 2.411, 2.739
3.068, 3.397, 3.561, 3.89, 3.999
4.712, 5.205, 5.752, 6.081, 6.355
6.958, 7.177, 7.56, 7.779, 8.108
8.437, 8.82, 9.204, 9.587, 9.861
10.3, 10.574, 11.012, 11.395, 11.724
12.107, 12.491, 12.765, 13.368, 13.716
nsp=0
p2=493.13, tw= 455, go= 0
iq=0, fa=1
x(1)=
0, 0.14603, 0.29206, 0.43809, 0.58412
0.73015, 0.87618, 1.02221, 1.16824, 1.3143
qf(1)=
1, 1, 1, 1, 1
1, 1, 1, 1, 1
jn=10
jst=
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
$end
```


IFA-677.1 Rod 6 BOL Temperature Case

* GOESINS:

```
FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
    CARRIAGE CONTROL='NONE'
*
* GOESOUTS:
FILE06='677.1r6.out',
        STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='677.1r6.plot',
        STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'
/***********************************************************************
    IFA-677.1 rod 6 BOL
    $frpcn
```

```
im=44, nr=17, ngasr=45, na=10
$end
$frpcon
dco=0.4232, thkcld=0.02854, thkgap=0.00335, totl=1.31988, cpl=1.1417
dspg=0.315, dspgw=0.05, vs=10
hplt=0.4331, rc=0.0354, hdish=0.0118, dishsd=0.0813
enrch=4.9, imox=0, comp=0
fotmtl=2, gadoln=0, ppmh2o=0, ppmn2=0
den=95.2, deng=0, roughf=0.0000787, rsntr=27.5, tsint=2911
icm=4, cldwks=0.5, roughc=0.0000197, catexf=0.05, chorg=10
fgpav=195.8, idxgas=1, nunits=1
iplant=-4, pitch=1.811, icor=0, crdt=0, crdtr=0, flux=11*50000000000000000
crephr=1, sgapf=31, slim=0.05, qend=0.3
jdlpr=1, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
ProblemTime=
0.05, 0.1, 0.15, 0.2, 0.25
0.3, 0.35, 0.4, 0.45, 0.5
0.55,0.6,0.65,0.7, 0.75
0.8,0.85, 0.9, 0.95, 1
1.05, 1.1, 1.15, 1.2, 1.25
1.3, 1.35, 1.4, 1.45, 1.5
1.55, 1.6, 1.65, 1.7, 1.75
1.8,1.85, 1.9, 1.95, 2
2.05, 2.1, 2.15, 2.2
qmpy=
0, 0.219, 0.438, 0.986, 1.26
1.698, 2.027, 2.356, 2.849, 3.342
3.561, 3.835, 4.054, 4.273, 4.602
4.931, 5.424, 6.081, 6.848, 7.122
7.451, 7.615, 7.834, 7.999, 8.108
8.218, 8.546, 8.766, 9.094, 9.368
9.587, 9.971, 10.135, 10.519, 10.683
10.793, 11.45, 11.834, 11.998, 12.217
12.491, 12.655, 12.71, 13.716
nsp=0
p2= 493.13, tw= 455, go= 0
iq=0, fa=1
x(1)=
0, 0.14665, 0.29331, 0.43996, 0.58661
0.73327, 0.87992, 1.02657, 1.17323, 1.31988
qf(1)=
1, 1, 1, 1, 1
1, 1, 1, 1, 1
jn=10
jst=
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1
$end
```


IFA-677.1 Rod 2 Temperature Case

* GOESINS :

FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED', CARRIAGE CONTROL='NONE'
\star

* GOESOUTS:

FILE06='IFA-677-2.out', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='IFA-677-2.plot', STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'
 IFA-677.1 Rod 2
\$frpen
im=101, nr=17, ngasr=45, na=10
\$end
\$frpcon
$\mathrm{dco}=0.4232$, thkcld=0.02854, thkgap=0.00335, totl=1.30906, cpl=1.7913
dspg=0.315, dspgw=0.05, vs=10
hplt=0.4331, rc=0.0354, hdish=0.0087, dishsd=0.0537
enrch=4.935, imox=0, comp=0
fotmtl=2, gadoln=0, ppmh $20=0, \mathrm{ppmn} 2=0$
den $=95.2$, deng=0, roughf=0.0000787, rsntr=27.5, tsint=2911
icm=4, cldwks=0.5, roughc=0.0000197, catexf=0.05, chorg=10
fgpav=195.8, idxgas=1, nunits=1
iplant=-4, pitch=1.811, icor=0, crdt=0, crdtr=0, flux=11*5000000000000000
crephr=1, sgapf=31, slim=0.05, qend=0.3
jdlpr=1, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
ProblemTime=
10.357, 19.186, 31.173, 40.642, 46.341
53.277, 58.967, 66.547, 72.246, 74.118
79.169, 84.202, 91.782, 96.201, 97.43
103.999, 107.769, 111.549, 115.319, 120.37
128.568, 132.906, 137.347, 147.447, 148.748
154.464, 160.18, 163.29, 167.688, 172.747
177.797, 182.216, 190.444, 192.304, 198.732
202.537, 208.121, 214.34, 216.272, 221.378
227.068, 233.991, 239.02, 244.715, 245.956
250.422, 252.269, 255.447, 259.252, 261.777
265.578, 270.637, 272.518, 284.961, 287.499
293.829, 297.663, 303.324, 307.129, 312.84
$316.555,320.356,321.623,329.199,332.965$
334.885, 339.944, 343.727, 348.146, 355.261
$360.235,361.476,364.611,366.458,370.894$
375.331, 379.788, 384.173, 389.266, 398.143
403.914, 407.629, 410.163, 413.29, 415.226
419.027, 425.361, 428.471, 434.792, 444.271
$447.871,452.26,462.395,470.623,474.402$
478.856, 485.228, 488.974, 494.647, 499.646
506.577
qmpy=
12.153, 12.258, 12.363, 12.365, 12.161
12.265, 12.163, 12.113, 11.908, 12.166
12.167, 12.374, 12.324, 12.325, 12.737
9.65, 9.856, 9.96, 10.167, 10.168
10.272, 11.252, 10.995, 10.997, 10.534
$10.123,9.713,10.28,10.538,10.436$
10.437, 10.438, 10.182, 10.594, 9.206

```
9, 10.186, 11.32, 10.857, 10.189
10.087, 10.346, 10.604, 10.451, 10.708
10.143, 10.71, 10.453, 10.248, 10.248
10.095, 9.993, 10.148, 12.364, 12.21
12.006, 11.44, 11.699, 11.493, 11.134
12.01, 11.857, 11.805, 11.807, 12.065
11.757, 11.655, 11.707, 11.708, 9.65
10.578, 10.835, 11.093, 11.66, 11.455
11.25, 10.788, 11.2, 10.687, 10.225
9.145, 10.021, 9.919, 10.28, 9.765
9.611, 9.355, 9.922, 9.821, 9.72
11.986, 12.347, 11.937, 11.682, 11.785
11.374, 10.655, 11.17, 11.275, 11.893
    12.049
nsp=0
p2= 493.13, tw= 455, go= 0
iq=0, fa=1
x(1)=
0, 0.14544, 0.29088, 0.43632, 0.58176
0.7272, 0.87264, 1.01808, 1.16352, 1.30906
qf(1)=
1, 1, 1, 1, 1
1, 1, 1, 1, 1
jn=10
jst=
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
    1
```

\$end

A. 5 Halden IFA-562 Rod

The Halden Ultra High Burnup (HUHB) test fuel assembly (IFA-562) (Wiesnack 1992) was initiated by the Halden reactor project to demonstrate the effect of burnup on fuel thermal conductivity. The HUHB configuration of the assembly consisted of six rods, four of which were instrumented with centerline expansion thermometers and two with pressure transducers. The rods were under irradiation in the Halden reactor from September 1989 to 1997. Documented data for fuel center temperatures and linear heat ratings are available to a rod-average burnup of 76 megawatt-days per metric ton of uranium (MWd/MTU).

Four rods (rods 15, 16, 17, and 18) contained "expansion centerline thermometers." These are tungsten (1.8 percent ZrO) rods that run the full length of the rod on the inside of the pellets and gage the average center temperature of each rod via thermal expansion of the rod detected by resistance change. Two rods (rods 13 and 14) each contained a pressure transducer for measuring rod internal pressure. The assembly instrumentation included four SPNDs, three of which were located coplanar at the top of the assembly and one near the bottom to define the thermal neutron flux distribution within the assembly.

The behavior of LHGR and measured temperatures were very similar for all four rods with temperature sensors. One rod (number 18) was selected for comparison to FRAPCON-3 predictions. The input file used for the UO_{2} temperature assessment as a function of burnup is shown below.

IFA-562 Rod 18 Case

```
* GOESINS:
FILE05='nullfile', STATUS='scratch', FORM='FORMATTED',
        CARRIAGE CONTROL='LIST'
*
* GOESOUTS :
FILE06='out562r18.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66= 'plot562r18.out', STATUS='UNKNOWN', FORM='FORMATTED'
/**********************************************************************
        IFA-562 rod 18 (ET4)
    $frpcn
    im=154, na=4,nr=20,
    mechan = 2, ngasr = 15,
    $end
    $frpcon
    cpl = 100.28, crdt = 0.0,pitch = 0.56,
    dco=0.2762, thkcld = 0.0197, thkgap=0.002,
    den = 94., dspg = 0.236,
    dspgw = 0.04, enrch = 13., fa= 1.0, fgpav = 145,
    hplt = 0.295, hdish = 0.0, icm = 2,
    icor = 0, idxgas = 1, nplot = 1,
    iplant = -4, iq = 0, jdlpr = 0,
    totl = 1.45, jn = 5,5,5, jst = 12*1,40*2,102*3,
    rc}=0.0394, roughc = 1.97e-5
    roughf = 2.36e-5, vs = 8.0,
    nunits = 1, rsntr = 150.,
    qf(1) = 0.807, 0.963, 1.025, 1.087, 1.118,
    qf(6) = 0.90, 1.00, 1.033, 1.033, 1.033,
    qf(11) = 0.903, 0.972, 1.042, 1.042, 1.042
    x(1) = 0.0, 0.38, 0.74, 1.10, 1.45,
    x(6)}=0.0,0.38,0.74,1.10, 1.45
```

```
x(11) = 0.0, 0.38, 0.74, 1.1, 1.45,
flux = 5*5.0e15, p2(1) = 500, tw(1) = 459.0, go(1) = 0.0,
ProblemTime=
0.43503 ,0.80173 ,1.38705 ,7.47071 ,9.7308 ,
10.9422 ,13.7663 ,19.2008 ,20.2054 ,22.9159 ,
32.7273 ,33.7323 ,34.5097 ,37.6132 ,41.7493 ,
64.8183 ,70.4971 ,73.3182 ,73.6958 ,77.6724,
79.0925 ,80.7099 ,91.4296 ,102.417 ,111.065 ,
112.673 ,113.386 ,114.295 ,120.388 ,125.329 ,
126.512 ,129.186 ,140.301 ,141.808 ,142.569 ,
143.636 ,144.535 ,144.723 ,157.737 ,158.367 ,
164.847 ,190.746 ,191.821 ,193.737 ,194.258 ,
217.31 ,218.421 ,219.156 ,220.116 ,220.973 ,
223.134 ,223.247,227.183 ,227.607 ,233.5
233.951 ,236.331 ,249.877 ,267.158 ,268.924 ,
272.965 ,273.655 ,274.268 ,298.281 ,298.9
319.631 , 325.674 ,328.984 ,329.303 ,331.248
332.314 ,343.383 ,354.836 ,355.615 ,369.821 ,
381.793 ,386.584 ,390.518 ,401.779 ,402.37
405.119 ,406.091 ,413.326 ,414.041 ,415.468 ,
417.273 ,418.598 ,421.171 ,431.288 ,432.362 ,
433.391 ,442.042 ,452.261 ,454.246 ,467.811 ,
469.596 ,483.766 ,488.786 ,491.259 ,499.438 ,
513.374 ,519.513 ,525.952 ,527.109 ,530.127,
530.654 ,531.389 ,534.611 ,555.952 ,601.893 ,
611.911 ,623.542 ,627.514 ,629.53 ,630.418 ,
641.244 ,645.96 ,648.069 ,653.543 ,659.318 ,
660.446 ,662.039 ,678.86 ,681.297 ,689.245
691.947 ,693.958 ,696.915 ,713.772 ,714.411
717.565 ,717.898 ,719.599 ,719.94 ,720.778 ,
722.409,728.508,732.685 ,741.803 ,743.816,
744.135 ,746.408 ,758.135 ,758.621 ,759.106 ,
759.724 ,771.859 ,774.897 ,776.758 ,777.903 ,
788.661 ,789.18 ,804.74 ,816.979
qmpy =6.28354 ,11.4634 ,9.94207 ,11.1311 ,9.96037 ,
9.41768 ,10.1402 ,10.5671 ,11.128 ,11.2713 ,
11.5579 ,7.00915 ,7.09146 ,8.26524 ,8.99695
9.73171 ,9.57317 ,9.7439 ,10.3415 ,10.186
10.2439 , 8.52134 ,8.5 ,9.7561 ,10.5366 ,
4.28659,5.36585 ,9.2622 ,10.3049 ,5.57927,
5.82622,8.01829,9.02439,4.06402,4.02134 ,
8.6128 ,7.67073 ,8.125 ,8.47256 ,8.50305 ,
8.27134 ,8.0122 ,7.83232 ,8.39329 ,8.80793 ,
7.90549 ,6.89329,4.16768,7.17378 ,8.04268 ,
8.14939 , 6.76524 ,7.39329,7.22561 ,8.05488 ,
8.5 ,8.3628 ,7.6311 ,8.06402 ,7.80488 ,
6.44207,6.65549,6.24695 ,6.95122 ,4.95122 ,
7.09146 ,6.33537 ,5.32012 ,4.80488 ,5.1189
4.30793 ,5.32622 ,5.61585 ,5.89939 ,5.71341 ,
5.56402 ,5.27439,6.42378,6.32317 ,6.47866
6.12805 , 4.72561 ,5.18598,5.35061 ,5.90244
6.36585 ,6.35366 ,5.65549 ,5.60061 ,3.56402
5.20732 ,5.92988 ,5.84451 ,5.78659 ,3.95122 ,
6.0061 ,5.67378,5.49085 ,4.02439,4.4939 ,
5 ,4.11585 ,4.04268,3.97256 ,3.80488 ,
4.36585 ,5.20427,5.70427,5.41768 ,5.25
5.42683,5.66159,5.78354 ,4.17683,4.31402,
```

```
5.02134 ,3.08537,4.71951,4.47561 ,5.17073 ,
3.39634,4.32622,4.55183,4.39939,4.81707,
4.81707 ,4.94817 ,4.92073 ,4.90549 ,4.79878,
4.3689 ,4.60061 ,4.05183 ,4.4939 ,4.56707 ,
4.22561,4.89634 ,4.58232 ,4.78659 ,3.42378 ,
4.80793 ,5.05183 ,4.2439 ,4.72866 ,4.7378 ,
4.95732,4.35366,3.78049,4.11585 ,4.0122 ,
4.12805 ,4.42073 ,3.4939 ,3.12805
slim = .03,
$end
```


A. 6 Halden IFA-597.3 Rod

The fuel segments for the high-burnup integral rod behavior test IFA-597 (Matsson and Turnbull 1998) were refabricated from fuel rod 33-25065, which was irradiated in the Ringhals 1 BWR, Sweden, for approximately 12 years. The irradiation of this rod and its sibling rod 33-25046 was performed in two stages. During the first irradiation, 1980 to 1986, the rods were part of Ringhals assembly 6477 and an approximate rod-averaged burnup of $35 \mathrm{GWd} / \mathrm{MTU}$ was reached. The rods were then placed into fuel assembly 9902 for a second period of irradiation from 1986 to 1992 in Ringhals I. The locations of fuel rods 33-25065 and 33-25046 in this assembly were positions 9902/D5 and 9902/E4, respectively. A final rod-averaged burnup of $59 \mathrm{GWd} / \mathrm{MTU}$ was achieved. The burnup at the location of the Halden refabricated segments was estimated as $67 \mathrm{GWd} / \mathrm{MTU}$.

Rods 8 and 9 were loaded into positions 2 and 5 in IFA- 597.2 (second loading) and irradiated in Halden for some 20 days in July 1995. After a few power ramps, rod 9 failed and the assembly was withdrawn. During this time, useful data were generated on centerline temperature as a function of power.

Rod 9 was removed and replaced by rod 7. The assembly was returned to the reactor as IFA-597.3 (third loading); the irradiation started in January 1997 and continued to May of that year having accrued a further $\sim 2 \mathrm{GWd} /$ MTU. Data obtained included centerline temperature as a function of power and burnup, $(\operatorname{rod} 8)$, FGR estimated from the increase in rod internal pressure transducer $(\operatorname{rod} 8)$, and clad elongation $(\operatorname{rod} 7)$.

The assembly was discharged and transported to Kjeller for post-irradiation examination (PIE). FGRs of 12.6 percent and 15.8 percent were measured from puncturing and gas extraction from rods 7 and 8 , respectively.

Rod 8 was used to assess the UO_{2} temperature and FGR predictions of FRAPCON-3.4. The input files used for these assessments are shown below.

IFA-597.3 Rod 8 FGR Case

```
* GOESINS:
FILE05='nullfile', STATUS='scratch', FORM='FORMATTED',
    CARRIAGE CONTROL='LIST'
*
* GOESOUTS:
FILE06='out597~3notc.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66 = 'plot597~3notc.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
/*************************************************************************
    ifa 597.3,Rod 8 FGR Case
    $frpcn
    im=71, na=3, nr=20,
    mechan = 2, ngasr = 45,
    $end
    $frpcon
    cpl = 1.5, dco = 0.4809, thkcld = 0.0315,
    den = 95.5, thkgap = 0.0052, rc = 0.0, dspg = 0.39,
    dspgw = 0.04, enrch = 3.35, fgpav = 73, hplt = 0.5,
        hdish= 0.0,pitch=0.56,fa=1.0,
    icm = 2, icor = 0, idxgas = 1, iplant = -3, iq = 0,
    jdlpr = 1, jn(1) = 4, nplot =1,
    jst(1) = 71*1
```

```
totl = 1.5, roughc = 4.5e-5, roughf = 8.5e-5, vs = 5.0,
nunits = 1, rsntr = 75.,
flux = 4*0.25e16, p2(1) = 500., tw(1) = 459., go(1) = 0.0,
qf(1)= 1., 1., 1., 1.,
x(1)= 0.0, 0.5, 1.0, 1.5,
ProblemTime =
0.1, 0.2, 0.3,
100., 200., 300., 400., 500.,
600., 700., 800., 900., 1000.,
1100., 1200.,1300.,1400.,1500.,
1600., 1700., 1800.,1900., 2000.,
2100., 2200., 2300., 2400., 2500.,
2600., 2700., 2800.,
2803., 2805., 2807., 2809., 2811.,
2811.2,2811.4,2811.6,2811.8,2812.,
2812.1,2812.2,2812.3,2813.,2814.,
2816.,2817.,2818.,2819.,2820.,
2821.,2829.,2837.,2842.,2843.,
2845.,2847.,2848.,2853.,2860.,
2865.,2870.,2873.,2877.,2879.,
2887.,2893.,2894.,2901.,2905.
qmpy =
1., 3., 5.,
28*5.68,
5., 4*7.62,
6.,5.,4.,3.,2.,
1.52,3.05,4.57,7.01,7.01,
7.62,7.93,8.23,8.54,8.08,
7.77,8.08,7.62,7.47,7.04,
7.01,7.47,7.32,7.47,7.32,
7.16,7.07,7.01,6.98,6.86,
6.40,6.71,6.40,5.91,5.79
    $end
```


IFA-597.3 Rod 8 Temperature Case

* GOESINS:

FILE05='nullfile', STATUS='scratch', FORM='FORMATTED', CARRIAGE CONTROL='LIST'
\star

* GOESOUTS:

FILE06='out597r8.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='plot597r8.out', STATUS='UNKNOWN', FORM='FORMATTED'
/***)
ifa 597.3 rod 8 temperature case
\$frpen
im=122, na=6, nr=20,
mechan $=2$, ngasr $=45$,
\$end
\$frpcon
$\mathrm{cpl}=2.0, \mathrm{dco}=0.4823$, thkcld $=0.03150$,
den $=95.5$, thkgap $=0.00413, \mathrm{rc}=0.049, \mathrm{dspg}=0.40$,
dspgw $=0.0030$, enrch $=3.35$, fgpav $=73.5$,
hplt $=0.4291$, hdish= 0.0,
icm $=2$, icor $=0$, idxgas $=1$, iplant $=-4, i q=0$,
$j d l p r=0, j n(1)=3$,
jst(1) $=122 * 1$ nplot $=1$,
totl $=1.16$, roughc $=2.5 e-5$, roughf $=8.5 e-5, \mathrm{vs}=20$. ,

```
nunits = 1, rsntr = 75.,fa= 1.0, pitch=0.56,
flux = 7*1.78e16,
nsp =1,
p2(1)=75*1000.0, p2(76)=47*494.,
tw (1) = 75*545, tw (76)=47*464.,
go(1) = 122*0.0,
qf(1)=1., 1., 1.
x(1)=0.0, 0.58, 1.16
ProblemTime =
    0.1, 0.2, 0.3,
20.0, 45.3, 88.6, 125.4, 170.8,
210.1, 250.8, 297.2, 332.4, 350.,
376.9, 411.2, 453.3, 498.6, 532.2,
578.5, 622.9, 676.1, 720.4, 764.3,
802.2, 848.1, 992.7, 1045.2, 1092.1,
1130.1, 1170.3, 1210.3, 1250.7, 1290.9,
1350.5, 1390.1, 1432.8, 1470.4, 1518.2,
1552.6, 1590.5, 1639.7, 1688.9, 1721.4,
1767.8, 1800., 1850., 1900., 1950.,
2000., 2050., 2100., 2150., 2200.,
2250., 2300., 2350., 2400., 2450.,
2500., 2550., 2600., 2650., 2700.,
2750., 2800., 2850., 2900., 2950.,
3000., 3050., 3100., 3150., 3200.,
3250., 3290.,
3290.1,3290.2, 3290.3, 3290.4,
3291.,3292.,3293.,3294., 3295.,
3296., 3297.,3298., 3299.,
3299.2, 3299.4, 3299.5,
3300.1, 3300.2, 3300.3, 3300.4,
    3300.7, 3301.4, 3302.6,
3306.8, 3310.8, 3316.5, 3320.7, 3324.9,
3329.1, 3333.5, 3337.9, 3339.0, 3342.1,
3347.5, 3351.9, 3356.4, 3360.9, 3365.4,
3369.9, 3372.5, 3377.3, 3377.4,3382.2, 3387.0,
3392.3, 3397.6, 3398.3
qmpy =
1., 2., 3.,
40*4.57,
4.57, 4*5.5,
10*5.5,
2*1.22, 3*5.5
5*5.5
4*5.5, 1.22,
2*1.22,
2.,4.,6., 6.,
3*6, 6*7.5,
6., 4.,2.,
2.0, 3.0, 4.0, 5.0,
5.44, 4.77, 3.93,
7.05, 7.81, 7.53, 7.54, 7.60,
7.40, 7.26, 7.11, 7.1, 6.7,
7.15, 7.14, 6.99, 6.99, 6.94,
6.89, 6.89, 6.33, 6.33, 6.63, 6.63,
5.8, 5.80, 5.66,
slim= 0.05,
$end
```


A.7 Halden IFA-515.10 Rods

IFA-515.10 (Tverberg and Amaya, 2001) contained hollow rods with centerline thermocouples irradiated up to a burnup of greater than $80 \mathrm{GWd} / \mathrm{MTU}$. Two of the rods contain UO_{2} and two of the rods contain 8 percent gadolinia. However, the gadolinium used in these rods is composed of ${ }^{160} \mathrm{Gd}$, which is a nonneutron absorbing isotope. In this way, the effect of the thermal conductivity degradation due to gadolinia can be separated from the power reduction that is typically seen in fuel containing gadolinia. For these rods, a special version of FRAPCON-3 was used that does not use the power profiles for neutronabsorbing gadolinia.

Rods A1 and A2 are sibling rods of UO_{2} and urania-gadolinia $\left(\mathrm{UO}_{2}-\mathrm{Gd}_{2} \mathrm{O}_{3}\right)$, respectively, and experience very similar power histories. This is also true for rods B 1 and B 2 . Halden has reported that the thermocouples failed in rods A1, A2, and B2 at the burnup indicated on Figures 3.10, 3.35, and 3.36. After this point, the temperature data are no longer valid.

These four rods were used to assess the FRAPCON-3.4 temperature predictions for UO_{2} and $\mathrm{UO}_{2}-\mathrm{Gd}_{2} \mathrm{O}_{3}$ fuel as a function of burnup. The input files used for the UO_{2} and $\mathrm{UO}_{2}-\mathrm{Gd}_{2} \mathrm{O}_{3}$ temperature assessment as a function of burnup are shown below.

IFA-515.10 Rod A1

```
* GOESINS:
FILEO5='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
        CARRIAGE CONTROL='NONE'
*
* GOESOUTS:
FILE06='515-A1.out',
            STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='515-A1.plot',
            STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'
/***************************************************************************
IFA-515.10 Rod A1
    $frpcn
    im=90, nr=17, ngasr=45, na=9
    $end
    $frpcon
    dco=0.2571, thkcld=0.01811, thkgap=0.00098, totl=0.72835, cpl=0.748
    dspg=0.2165, dspgw=0.0394, vs=10
    hplt=0.2362, rc=0.0354, hdish=0, dishsd=0.1094
    enrch=11.5, imox=0, comp=0
    fotmtl=2, gadoln=0, ppmh2o=0, ppmn2=0
    den=96.8, deng=0, roughf=0.0000787, rsntr=100, tsint=2911
    icm=2, cldwks=0, roughc=0.0000197, catexf=0.05, chorg=10
    fgpav=145.04, idxgas=1
    iplant=-4, pitch=0.2956, icor=0, crdt=0, crdtr=0, flux=10*50000000000000000
    crephr=10, sgapf=31, slim=0.05, qend=0.3
    jdlpr=1, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
    ProblemTime=
    1.18, 11.73, 13.19, 27.93, 37.41
    45.21, 51.74, 78.47, 78.69, 96.25
    106.82, 125.58, 126.56, 152.61, 166.07
    177.89, 190.97, 202.55, 215.64, 220.93
    224.22, 230.4, 240.83, 242.25, 245.67
```

```
255.47, 256.47, 261.76, 282.24, 283.15
291.49, 297.69, 302.76, 322.41, 332.27
338.27, 349.3, 358.32, 371.69, 386.09
397.55, 426.65, 440.79, 446.78, 452.81
455.22, 461.3, 461.98, 469.7, 474.48
481.8, 496.87, 498.51, 500.23, 509.87
516.56, 561.21, 575.09, 577.8, 592.04
594.86, 621.34, 622.36, 637.59, 656.08
681.83, 702.63, 706.25, 706.95, 717.24
741.76, 756.72, 766.41, 769.83, 792.76
792.78, 815.08, 825.37, 838.11, 879.09
899.46, 917.34, 919.05, 930.55, 972.14
1009.32, 1015.74, 1061.87, 1091.8, 1103.31
qmpy=
6.524, 3.197, 5.856, 6.236, 5.594
5.503, 5.83, 2.752, 5.346, 5.857
4.992, 5.176, 3.617, 3.29, 5.818
4.915, 4.941, 4.614, 5.413, 4.994
4.863, 5.308, 5.138, 6.173, 5.4
5.505, 6.383, 6.029, 6.043, 6.449
6.449, 7.065, 6.148, 6.017, 6.62
6.201, 6.358, 5.218, 5.232, 5.232
6.201, 6.87, 6.844, 6.163, 6.255
7.145, 7.067, 5.953, 6.333, 6.884
6.569, 6.413, 6.937, 4.762, 5.063
6.727, 5.758, 6.243, 5.732, 6.073
5.484, 5.274, 5.445, 5.288, 5.236
5.223, 5.171, 4.123, 4.49, 5.027
4.817, 5.053, 4.988, 4.595, 4.438
4.281, 4.347, 4.163, 3.299, 3.417
3.155, 2.998, 3.509, 3.247, 3.234
3.182, 3.392, 3.143, 3.052, 2.777
nsp=0
p2=493.13, tw= 464, go= 0
iq=0, fa=1
x(1)=
0, 0.72835
qf(1)=
1, 1
jn=2
jst=
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
```

$1,1,1,1,1$
$1,1,1,1,1$
\$end

IFA-515.10 Rod A2

* GOESINS:

FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED', CARRIAGE CONTROL='NONE'
*

* GOESOUTS:

FILE06='515-A2. out', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='515-A2.plot', STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'

IFA-515.10 Rod A2
\$frpen
im=92, nr=17, ngasr=45, na=9
\$end
\$frpcon
dco=0.2571, thkcld=0.01811, thkgap=0.00098, totl=0.72835, cpl=0.7362
dspg=0.2165, dspgw=0.0394, vs=10
hplt=0.2362, rc=0.0354, hdish=0, dishsd=0.1094
enrch=13, imox=0, comp=0
fotmtl=2, gadoln=0.08, ppmh2o=0, ppmn2=0
den=97.3, deng=0, roughf=0.0000787, rsntr=0, tsint=2911
icm=2, cldwks=0, roughc=0.0000197, catexf=0.05, chorg=10
fgpav=145.04, idxgas=1
iplant $=-4$, pitch=0.2956, icor=0, crdt=0, crdtr=0, flux=10*5000000000000000
crephr=10, sgapf=31, slim=0.05, qend=0.3
jdlpr=1, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
ProblemTime=
0.9257, 10.183, 14.0256, 26.4489, 27.4234
56.6538, 64.4474, 83.8406, 92.5515, 121.1094
124.0922, 127.9096, 127.9113, 146.9121, 148.9489
155.0088, 157.8301, 168.9045, 171.0789, 186.0781
195.2272, 206.6632, 211.8169, 212.8911, 219.4753
$221.4908,236.411,241.2181,249.622,251.2313$
253.7707, 275.9616, 277.5645, 289.4516, 294.4467
$305.2693,314.5788,323.1738,325.646,339.1863$
$348.9701,363.6806,364.6428,375.3528,381.2033$
387.7418, 399.6896, 418.4637, 429.8751, 437.35
$441.7031,452.9828,462.4106,472.3968,485.9889$
489.1192, 490.2186, 496.6586, 498.3332, 503.1967
$507.507,525.8332,550.7197,559.2848,566.4029$
578.8926, 579.8727, 604.4594, 607.4282, 613.3801
627.837, 658.8, 684.7323, 696.6081, 709.5151
729.6179, 748.7744, 753.3161, 785.2378, 806.2351
806.2365, 827.866, 869.8712, 902.2747, 914.6252
$954.8767,993.2894,996.4,1043.3503,1084.9598$
1096.8266, 1100.28
qmpy=
5.831, 2.916, 5.619, 6.083, 5.54
$5.54,2.77,5.567,4.957,5.104$
$3.619,4.242,3.606,3.421,5.077$

```
5.382, 5.74, 5.356, 4.998, 5.038
4.72, 4.72, 5.237, 5.025, 4.919
5.356, 5.065, 3.369, 5.781, 6.709
6.377, 6.325, 6.735, 7.266, 6.484
6.484, 6.378, 6.908, 6.551, 6.379
5.517, 5.504, 5.61, 5.544, 6.459
6.605, 6.777, 7.188, 7.096, 6.499
7.44, 6.221,6.871, 6.487, 6.354
6.898, 4.91, 5.029, 6.447, 6.659
6.262, 5.891, 5.64, 6.302, 5.309
6.051, 5.507, 5.269, 5.455, 5.442
5.601, 5.23, 5.204, 4.091, 5.019
4.833, 5.072, 4.754, 4.397, 4.37
4.556, 3.244, 3.47, 3.165, 3.497
3.219, 3.232, 3.471, 3.219, 3.114
2.729, 1.563
nsp=0
p2=493.13, tw= 464, go= 0
iq=0, fa=1
x(1)=
0, 0.72835
qf(1)=
1, 1
jn=2
jst=
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1
$end
```


IFA-515.10 Rod B1

* GOESINS:

```
FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
    CARRIAGE CONTROL='NONE'
*
* GOESOUTS:
FILE06='515-B1.out',
    STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='515-B1.plot',
    STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'
```

```
/**************************************************************************
IFA-515.10 Rod B1
    $frpcn
    im=86, nr=17, ngasr=45, na=9
    $end
    $frpcon
    dco=0.2571, thkcld=0.01811, thkgap=0.00098, totl=0.72835, cpl=0.7362
    dspg=0.2165, dspgw=0.0394, vs=10
    hplt=0.2362, rc=0.0354, hdish=0, dishsd=0.1094
    enrch=11.5, imox=0, comp=0
    fotmtl=2, gadoln=0, ppmh2o=0, ppmn2=0
    den=96.8, deng=0, roughf=0.0000787, rsntr=100, tsint=2911
    icm=2, cldwks=0, roughc=0.0000197, catexf=0.05, chorg=10
    fgpav=145.04, idxgas=1
    iplant=-4, pitch=0.2956, icor=0, crdt=0, crdtr=0, flux=10*50000000000000000
    crephr=10, sgapf=31, slim=0.05, qend=0.3
    jdlpr=1, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
    ProblemTime=
    1.76, 7.17, 17.96, 20.77, 35.11
    41.35, 56.52, 62.89, 89.29, 107.35
    109.54, 142.21, 143.12, 176.3, 187.99
    200.79, 218.3, 224.35, 235.42, 240.14
    249.35, 261.35, 274.08, 281.12, 286.32
    287.95, 311.54, 314.11, 323.98, 327.96
    331.17, 349.94, 362.57, 382.06, 383.84
    411.15, 414.89, 422.56, 444.82, 455.78
    465.92, 474.32, 481.32, 481.84, 485.75
    488.92, 498.92, 514.6, 526.13, 528.87
    535.58, 542.84, 557.42, 582.73, 597.75
    603.54, 606.22, 615.16, 624.46, 630.27
    653.07, 653.13, 671.66, 691.14, 726.19
    742.76, 758.3, 776.17, 780.69, 793.63
    801.56, 836.08, 855.95, 866.82, 910.79
    949.19, 950.95, 970.41, 1019.38, 1034.07
    1049.63, 1070.37, 1097.05, 1123.91, 1127.49
    1143.52
    qmpy=
    6.048, 2.978, 2.991, 5.208, 5.681
    4.972, 4.959, 5.103, 2.689, 4.985
    4.644, 4.605, 3.24, 3.24, 5.379
    4.5,4.618, 4.369, 4.369, 4.67
    4.67, 4.972, 4.592, 5.589, 6.533
    6.166, 6.153, 6.547, 6.533, 6.914
    6.455, 6.284, 6.402, 6.035, 5.313
    5.313, 6.166, 6.35, 6.271, 6.979
    6.874, 6.271, 6.402, 7.281, 7.281
    6.14, 6.52, 6.127, 6.599, 4.565
    4.893, 6.258, 5.851, 5.497, 4.539
    6.022, 6.022, 5.261, 5.904, 5.392
    5.169, 5.326, 5.208, 5.248, 5.051
    4.119, 4.933, 4.802, 4.723, 5.025
    4.67, 4.342, 4.329, 3.293, 3.555
    3.057, 3.542, 3.293, 3.293, 3.293
    3.477,3.359, 3.214, 3.201, 2.821
        1.535
    nsp=0
```

```
p2= 493.13, tw= 464, go= 0
iq=0, fa=1
x(1)=
0, 0.72835
qf(1)=
1, 1
jn=2
jst=
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
    1
$end
```


IFA-515.10 Rod B2

```
* GOESINS:
FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
    CARRIAGE CONTROL='NONE'
*
* GOESOUTS:
FILE06='515-B2.out',
        STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='515-B2.plot',
    STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'
/**************************************************************************
FA-515.10 Rod B2
    $frpcn
    im=96, nr=17, ngasr=45, na=9
    $end
    $frpcon
    dco=0.2571, thkcld=0.01811, thkgap=0.00098, totl=0.72835, cpl=0.7362
    dspg=0.2165, dspgw=0.0394, vs=10
    hplt=0.2362, rc=0.0354, hdish=0, dishsd=0.1094
    enrch=13, imox=0, comp=0
    fotmtl=2, gadoln=0.08, ppmh2o=0, ppmn2=0
    den=97.3, deng=0, roughf=0.0000787, rsntr=100, tsint=2911
    icm=2, cldwks=0, roughc=0.0000197, catexf=0.05, chorg=10
    fgpav=145.04, idxgas=1
    iplant=-4, pitch=0.2956, icor=0, crdt=0, crdtr=0, flux=10*50000000000000000
    crephr=10, sgapf=31, slim=0.05, qend=0.3
    jdlpr=1, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
```

```
    ProblemTime=
    3.629, 14.316, 16.074, 31.221, 36.942
    59.089, 74.677, 94.608, 97.581, 122.586
    122.587, 127.898, 149.027, 164.526, 178.859
    189.809, 197.874, 210.763, 218.538, 228.469
    232.669, 245.364, 258.361, 281.063, 286.275
    293.062, 297.892, 301.801, 302.475, 309.586
    324.349, 329.698, 335.655, 343.397, 351.191
    359.244, 376.36, 379.523, 387.927, 394.639
    403.664, 405.457, 412.875, 417.371, 430.584
    436.286, 446.856, 449.37, 458.493, 460.626
    465.489, 466.989, 476.784, 479.327, 489.859
    505.621, 506.511, 507.98, 513.343, 520.296
    545.235, 566.584, 574.138, 578.035, 585.869
    587.607, 597.493, 599.272, 626.589, 633.509
    640.52, 643.52, 653.393, 657.452, 671.273
    682.414, 698.83, 711.026, 729.349, 743.499
    750.118, 760.715, 773.449, 788.597, 802.385
    822.17, 825.969, 840.433, 886.682, 922.633
    929.29, 955.556, 1000.623, 1024.682, 1067.534
1095.709
    qmpy=
    5.799, 3.083, 5.497, 6.126, 5.444
    5.614, 2.794, 5.666, 5.115, 5.181
    5.181, 3.501, 3.58, 5.823, 4.76
    4.957, 4.603, 4.602, 4.93, 4.878
    5.324, 5.061, 5.927, 5.94, 6.346
    6.359, 6.897, 6.897, 6.215, 6.018
    5.821, 6.162, 6.411, 6.227, 6.227
    5.112, 5.033, 5.217, 5.112, 5.807
    6.017, 5.846, 5.807, 6.122, 6.594
    6.633, 6.633, 5.964, 6.095, 6.908
    6.974, 5.767, 6.121, 6.908, 6.606
    6.488, 6.921, 4.861, 5.11, 6.579
    6.015, 5.791, 4.755, 6.185, 6.198
    5.699, 6.067, 5.502, 5.318, 5.502
    5.344, 5.462, 5.462, 5.2, 5.501
    5.291, 5.252, 4.281, 5.081, 4.937
    4.871, 5.133, 4.582, 4.634, 4.254
    4.372, 4.162, 3.243, 3.387, 2.98
    3.334, 3.282, 3.229, 3.373, 3.136
        3.058
nsp=0
p2= 493.13, tw= 464, go= 0
iq=0, fa=1
x(1)=
0, 0.72835
qf(1)=
1, 1
jn=2
jst=
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
```

$1,1,1,1,1$
$1,1,1,1,1$
$1,1,1,1,1$
$1,1,1,1,1$
$1,1,1,1,1$
$1,1,1,1,1$
$1,1,1,1,1$
$1,1,1,1,1$
$1,1,1,1,1$
$1,1,1,1,1$
$1,1,1,1,1$
$1,1,1,1,1$
$1,1,1,1,1$
\$end

A. 8 Halden IFA-681 Rods

IFA-681 (Klecha 2006) consists of six rods that had been irradiated for four cycles or 340 days as of 2006. Ongoing irradiation is currently underway in the Halden reactor. The input files for the UO_{2} rods (rods 1 and 5) have been extended for six cycles to 507 days. All six of these rods were modeled using FRAPCON-3.4. Three of these rods contain solid pellets with hollow pellets at the top end and are equipped with centerline thermocouples in the top pellets. These three rods have $\mathrm{UO}_{2}(\operatorname{rod} 1), 2$ percent $\mathrm{Gd}_{2} \mathrm{O}_{3}(\operatorname{rod} 2)$, and 8 percent $\mathrm{Gd}_{2} \mathrm{O}_{3}(\operatorname{rod} 3)$ pellets.

The other three rods contain all hollow pellets and are equipped with expansion thermometers. These three rods also have $\mathrm{UO}_{2}(\operatorname{rod} 5), 2$ percent $\mathrm{Gd}_{2} \mathrm{O}_{3}(\operatorname{rod} 4)$, and 8 percent $\mathrm{Gd}_{2} \mathrm{O}_{3}(\operatorname{rod} 6)$ pellets, with rod 6 being filled with 50 percent argon and 50 percent helium.

For rod 3, there are some overpredictions (50 to $120^{\circ} \mathrm{C}$) in the third and fourth cycles. This may be due to error in the temperature measurement or the estimation of the rod power level. This seems likely because the power level during these cycles is reported to increase from about $21 \mathrm{~kW} / \mathrm{m}$ to about $25 \mathrm{~kW} / \mathrm{m}$, while the temperature is reported to remain constant at about $850^{\circ} \mathrm{C}$. It also seems strange for the power level in this rod to increase during these cycles while the power level in the other rods is constant during these cycles.

These six rods were used to assess the FRAPCON-3.4 temperature predictions for UO_{2} and $\mathrm{UO}_{2}-\mathrm{Gd}_{2} \mathrm{O}_{3}$ fuel as a function of burnup. The input files used for the UO_{2} and $\mathrm{UO}_{2}-\mathrm{Gd}_{2} \mathrm{O}_{3}$ temperature assessment as a function of burnup are not included in this report due to the limited availability and sensitivity of this information..

A. 9 Halden IFA-558 Rods

IFA-558 (Turnbull and White 2002) was an assembly commissioned by Central Electricity Generating Board in the UK (later Nuclear Electric) to investigate the effect of hydrostatic restraint on the onset of grain boundary interlinkage, and hence, FGR. The assembly comprised six identical, short boiling-water reactor (BWR) type rods, each fitted with a pressure transducer and upper and lower fuel centerline thermocouples. The rods contained 7 percent enriched hollow pellets supplied by British Nuclear Fuels, Ltd. (BNFL) with a $200 \mu \mathrm{~m}$ cold diametral fuel-to-clad gap. In this way, PCMI effects were minimized, which would otherwise have introduced unwanted uncertainty in the hydrostatic pressure in the fuel pellets.

The assembly was loaded in February 1986 and continued operation successfully until discharge at $\sim 40 \mathrm{GWd} / \mathrm{MTU}$ in March 1992. The fuel rods were subsequently sent to AEA Technology for PIE.

During startup, the rods were filled with helium gas at 2 bar pressure. Once the temperatures had stabilized at the prescribed normal operating powers, the pressures of four rods were altered in pairs in such a way as to minimize the spread of temperatures. Subsequently, rods 1 and 2 were operated at the maximum internal pressure of 40 bar, rods 5 and 6 operated at 20 bar, while rods 3 and 4 remained at 2 bar. These pressures were maintained during all gas flow measurements and were only reduced at cold shutdown for safety reasons. The spread in fuel centerline temperatures during operation at around $35 \mathrm{~kW} / \mathrm{m}$ for rods 2 through 6 was less than $60^{\circ} \mathrm{C}$, but rod 1 was consistently some $50^{\circ} \mathrm{C}$ higher.

Radioactive FGR was measured frequently, particularly in rod 3, and the measurements were used to monitor the onset of grain boundary interlinkage. In addition, all gas swept out of the rods was retained in separate cold traps to measure the activity of ${ }^{85} \mathrm{Kr}$, which was used to estimate the cumulative release of stable fission gas. This FGR data demonstrated that rod internal pressures up to 40 bar had little effect on FGR.

Rod 6 was used to assess the UO_{2} temperature predictions of FRAPCON-3.4. The input file used for this assessment is shown below.

IFA-558 Rod 6

```
* GOESINS:
FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
                            CARRIAGE CONTROL='NONE'
*
* GOESOUTS:
FILE06='558r6.out',
            STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='558r6.plot',
    STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'
/***********************************************************************
IFA-558 Rod 6 irradiation
    $frpcn
    im=193, nr=17, ngasr=45, na=9
    $end
    $frpcon
    dco=0.4921, thkcld=0.03346, thkgap=0.00374, totl=2.29199, cpl=11.811
    dspg=0.4173, dspgw=0.05, vs=10
    hplt=0.5, rc=0.0591, hdish=0, dishsd=0.2089
```

enrch=7, imox=0, comp=0, ifba=0, b10=0, zrb2thick=0, zrb2den=90 fotmtl=2, gadoln=0, ppmh2o=0, ppmn $2=0$
den $=95$, deng=0, roughf=0.0000787, rsntr=100, tsint=2911
icm=2, cldwks=0, roughc=0.0000197, catexf=0.05, chorg=10
fgpav=144.31, idxgas=1, nunits=1, zr2vintage=1
iplant $=-2$, pitch=0.6398, icor=0, crdt=0, crdtr=0, flux=10*5000000000000000
crephr=10, sgapf=31, slim=0.05, qend=0.3, ngasmod=2
jdlpr=1, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
ProblemTime=
9.23277, 12.23258, 20.25254, 24.40932, 28.72637
$34.768,40.42194,44.32893,48.55906,55.51768$
59.64239, 68.20546, 74.32519, 78.47402, 84.62798
$88.24684,95.6484,100.50419,106.32257,114.82881$
118.51141, 124.54594, 129.04444, 136.72156, 140.56233
144.89259, 150.00987, 154.54799, 160.94651, 166.30838
170.93386, 176.26077, 184.8945, 190.57191, 197.25675
201.61126, 206.32171, 212.52209, 218.85836, 223.26032
228.83212, 233.9859, 241.11864, 249.8468, 256.60391
261.30265, 269.16482, 273.97563, 280.70497, 287.33455
289.82212, 296.7486, 302.95525, 310.30827, 314.56541
323.53245, 327.26102, 332.93171, 337.31804, 344.17256
$348.90749,354.2508,358.72474,363.88811,368.03597$
$371.8751,376.77339,383.91072,389.56532,393.46927$
399.04503, 403.08011, 409.70497, 414.52919, 419.88375
$423.80971,426.79297,431.4387,436.47212,443.07496$
$447.88108,466.23778,480.68577,485.36219,491.7528$
496.73538, 501.00872, 505.52374, 510.54838, 518.80825
$530.19591,533.06147,536.13293,545.05715,547.88801$
$554.86373,561.02342,565.98276,578.59922,581.45446$
$592.16728,595.6572,600.35405,606.27069,610.46307$
616.09411, 630.53679, 634.42474, 638.04933, 643.1219
647.6596, 651.31326, 660.0665, 666.28907, 670.97384
675.47866, 679.43225, 692.40404, 695.75451, 699.08706
709.18153, 725.96888, 729.51359, 740.73953, 747.67087
752.99773, 757.26213, 761.48233, 773.0368, 778.25786
782.30132, 792.50097, 795.73564, 802.75115, 807.51425
810.23594, 815.18606, 820.94155, 824.91883, 834.42957
839.84713, 844.5573, 849.58192, 852.48086, 859.62617
868.18102, 873.86181, 884.22251, 889.50111, 893.67731
898.23305, 902.02999, 912.6552, 917.37526, 925.38504
931.55281, 937.94774, 944.14235, 947.12677, 953.30263
958.94313, 962.40706, 965.78039, 973.26748, 981.38116
991.14259, 998.40849, 1017.67656, 1021.64171, 1029.65174
1035.71158, 1042.83366, 1044.78228, 1049.8526, 1062.21505
1070.41153, 1081.94888, 1084.68327, 1089.50856, 1101.53866
1101.82959, 1109.63861, 1121.12679, 1127.0999, 1132.79787
1142.44638, 1155.27866, 1163.14977, 1174.80284, 1183.2385
1188.58508, 1193.60718, 1198.43247
qmpy=
8.927, 9.533, 7.333, 10.107, 10.043
9.597, 8.991, 9.214, 10.139, 10.362
$10.49,10.139,10.585,10.458,10.553$
$4.751,3.954,8.481,7.524,6.026$
9.374, 8.449, 8.066, 7.556, 7.524
$8.258,8.449,8.003,7.907,8.066$
9.246, 9.469, 9.214, 8.927, 7.652
$9.724,9.246,10.394,10.266,9.884$

```
10.33, 9.852, 10.107, 5.229, 7.333
7.652, 7.365, 7.493, 8.513, 7.684
8.545, 8.353, 7.078, 6.887, 8.322
8.066, 9.501, 8.959, 9.788, 9.501
9.182, 9.437, 9.661, 4.655, 9.852
7.78, 4.719, 5.038, 6.281, 8.927
9.055, 8.959, 8.736, 8.959, 8.162
5.803, 9.15, 9.31, 9.979, 9.852
10.458, 10.617, 4.209, 8.8, 10.075
10.139, 10.139, 3.858, 4.272, 3.539
3.794, 11.35, 11.701, 4.432, 5.006
5.165, 3.635, 4.304, 4.017, 4.91
4.081, 9.597, 12.052, 11.063, 11.956
11.574, 4.24, 10.394, 10.011, 7.365
9.342, 9.82, 3.635, 6.727, 6.217
10.745, 10.936, 4.145, 8.066, 6.695
4.4, 4.304, 5.898, 4.559, 10.043
8.29, 8.449, 8.545, 9.342, 8.385
5.675, 3.635, 12.148, 12.339, 12.148
10.84, 10.266, 8.895, 10.681, 4.846
5.293, 10.235, 10.075, 9.979, 9.15
9.278, 8.927, 9.055, 9.533, 8.736
9.437, 9.501, 8.864, 9.15, 9.023
9.342, 9.055, 6.058, 9.182, 9.342
8.991, 8.417, 8.545, 8.672, 7.206
8.8, 8.003, 7.142, 7.269, 8.066
8.322, 7.174, 7.365, 7.142, 7.014
7.046, 3.284, 7.237, 7.461, 6.058
6.919, 7.078, 7.524, 6.153, 7.493
6.058, 6.185, 6.409, 9.182, 3.73
7.748, 7.237, 7.461
nsp=0
p2=464.12, tw= 482, go= 0
iq=0, fa=1
x(1)=
0, 2.29199
qf(1)=
1, 1
jn=2
jst=1
$end
```


A.10 Halden IFA-629.1 Rods

The IFA-629.1 (White, 1999) test involved two MOX test rods (rods 1 and 2), but only rod 2 was punctured for FGR measurement such that only this rod will be used for FGR comparison. Both rods are used for the temperature comparison as a function of burnup. The MOX fuel was fabricated using the MIMAS-AUC process by Belgonucleaire (BN). The mother rod for the IFA-629.1 test rods was a fulllength pressurized-water reactor (PWR) MOX rod irradiated for two cycles in the Saint-Laurent PWR, France, with rods 1 and 2 cut as segments from the full-length rod and refabricated into short segments. The rod 2 segment had a burnup of $29 \mathrm{GWd} /$ MTM following commercial irradiation, which was extended to $40 \mathrm{GWd} / \mathrm{MTM}$ during the Halden irradiation. The maximum LHGRs in Halden were significant, at 35 to $40 \mathrm{~kW} / \mathrm{m}$.

These two rods were used to assess the FRAPCON-3.4 temperature predictions for MOX as a function of burnup. Rod 2 was used to assess the FRAPCON-3.4 MOX FGR predictions. The input files used for the MOX temperature and FGR assessments are shown below. Input files that include the central hole were used for the temperature assessment since the temperature was measured on hollow pellets. The input file for rod 2 does not include the central hole for the FGR assessment since most of the pellets were solid.

IFA-629.1 Rod 2 FGR Case

* GOESINS:

```
FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
                                    CARRIAGE CONTROL='NONE'
*
* GOESOUTS:
FILE06='ifa629-1notc.out', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='ifa629-1notc.plot', STATUS='UNKNOWN', FORM='FORMATTED',
                CARRIAGE CONTROL='LIST'
/**********************************************************************
            Refab.St Laurent PWR 2-Cycle Segment IFA-629.1 Rod 2
    $frpcn
    im=56, na=4,
    mechan = 2, ngasr = 45,
    $end
    $frpcon
    cpl = 2., crdt = 0.0, thkcld = 0.0224, thkgap = 0.0033,
    dco = 0.374, pitch = 0.5,nplot=1,
    rc = 0.0, fotmtl = 1.997,dishsd=0.0652,
    den = 95.34, dspg=0.3,fa=1.,
    dspgw = 0.03, enrch = 0.253, fgpav = 382, hdish = 0.011,
    hplt = 0.5, icm = 4, imox = 1, comp = 5.931,
    idxgas = 1, iplant =-2, iq = 0, jdlpr = 0,
    jn = 5,5,
    totl = 1.48, roughc = 3.94e-5, roughf = 7.9e-5, vs = 10.0,
    nunits = 1, rsntr = 70., nsp = 1,
    p2(1) = 25*2250., p2(26) = 31*500.,
    tw(1) = 25*570, tw(26) = 31*464.,
    go(1) = 56*0.0,
    jst = 25*1, 31*2,
    qf(1) = 1.0, 1.0, 1.0, 1.0, 1.0
    x(1) = 0.0, 0.37, 0.74, 1.11, 1.48
    qf(6) = 0.9, 1.0, 1.1, 1.0, 0.9
    x(6) = 0.0, 0.37, 0.74, 1.11, 1.48
    ProblemTime=
```

```
0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 30., 60., 90., 120.,
150., 180., 210., 240., 270.,
300., 331., 360., 390., 420.,
450., 490., 530., 560., 587.,
588., 588.1, 588.2, 588.3, 588.4,
588.5,588.6, 588.7, 588.8, 588.9,
590., 591., 592., 593.,
594., 595., 598., 602., 605.,
638., 654., 674., 703., 703.1,
703.2, 703.3, 703.4, 703.5, 703.6,
703.7, 703.8
qmpy =
1,2,3,4,5,
6., 4*7.3,
10*7.3,
5*7.3,
    5.0, 3.0, 2.0, 1.0, 2.0,
    3.0, 4.0, 5.0, 6.0, 7.0,
    8.0, 8.84, 9.14, 9.45,
    9.75,10.97,11.28,11.58,12.80,
    11.58, 9.14, 9.45, 9.14, 8.0,
    7.0, 6.0, 5.0, 4.0, 3.0,
    2.0, 1.0
slim = .05,
$end
$frpmox
enrpu39 = 61.47, enrpu40 = 24.67, enrpu41 = 9.06,
enrpu42 = 4.80,
$end
```


IFA-629.1 Rod 1 Temperature Case

* GOESINS:

```
FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
```

 CARRIAGE CONTROL='NONE'
 \star

* GOESOUTS:
FILE06='ifa629-1r1tcextend.out', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='ifa629-1r1tcextend.plot', STATUS='UNKNOWN', FORM='FORMATTED',
CARRIAGE CONTROL='LIST'

Refab. St Laurent PWR 2-Cycle Segment IFA-629.1 Rod 1 with TC
\$frpen
im=62, na=4,
mechan $=2$, ngasr $=45$,
\$end
\$frpcon
$\mathrm{cpl}=2 ., \mathrm{crdt}=0.0, \mathrm{thkcld}=0.0224$, thkgap $=0.0033$,
dco $=0.374$, pitch $=0.5$, nplot=1,
rc $=0.0492$, fotmtl $=1.997$,dishsd=0.0652,
den $=95.34, \mathrm{dspg}=0.3, \mathrm{fa}=1$. ,
idxgas $=6$, amfhe $=0.60$, amfxe $=0.40$,
dspgw $=0.03$, enrch $=0.253$, fgpav $=382$, hdish $=0.011$,
hplt $=0.5$, icm $=4$, imox $=1$, comp $=5.931$,
iplant $=-2$, iq $=0, j d l p r=0$,
$j n=5,5$,
totl $=1.48$, roughc $=3.94 \mathrm{e}-5$, roughf $=7.9 \mathrm{e}-5, \mathrm{vs}=10.0$,

```
nunits = 1, rsntr = 70., nsp = 1,
p2(1) = 25*2250., p2(26) = 37*500.,
tw(1) = 25*570, tw(26) = 37*464.,
go(1) = 62*0.0,
jst = 62*1,
qf(1) = 1.0, 1.0, 1.0, 1.0, 1.0
x(1) = 0.0, 0.37, 0.74, 1.11, 1.48
qf(6) = 0.9, 1.0, 1.1, 1.0, 0.9
x(6) = 0.0, 0.37, 0.74, 1.11, 1.48
ProblemTime=
0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 30., 60., 90., 120.,
150., 180., 210., 240., 270.,
300., 331., 360., 390., 420.,
450., 490., 530., 560., 587.,
588.3, 590.4, 592.5, 593.5,
594.6, 595.9, 596.6, 599,
601.3, 604.3, 605.9, 607.1,
609.2, 618.8, 627.3, 632.3,
640.2, 641.9, 643, 651.5,
658, 660.2, 669.8, 673.8,
674.8, 678, 679.9, 686.6,
690.4, 692.3, 693, 696.3,
697.4, 699.3, 700.3, 704.3, 706.8
qmpy =
1,2,3,4,5,
6., 4*6.6,
10*6.6,
5*6.6,
6.55, 4.69, 7.96, 8.20, 8.41, 8.75, 9.83, 10.12,
10.36, 10.27, 11.31, 11.27, 10.03, 9.94, 9.75,
9.81, 9.66, 6.60, 7.82, 7.86, 7.83, 8.05, 8.11,
7.92, 8.38, 8.32, 7.77, 8.08, 8.08, 7.82, 8.05,
7.92, 7.65, 7.62, 7.86, 7.71, 7.25
slim = .05,
    $end
    $frpmox
enrpu39 = 61.47, enrpu40 = 24.67, enrpu41 = 9.06,
enrpu42 = 4.80,
$end
```


IFA-629.1 Rod 2 Temperature Case

* GOESINS:

FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED', CARRIAGE CONTROL='NONE'
\star

* GOESOUTS:

FILE06='ifa629-1r2tcextend.out', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='ifa629-1r2tcextend.plot', STATUS='UNKNOWN', FORM='FORMATTED', CARRIAGE CONTROL='LIST'
$/ \star \star * ~$
Refab. St Laurent PWR 2-Cycle Segment IFA-629.1 Rod 2 with TC
\$frpen
im=62, na=4,
mechan $=2$, ngasr $=45$,
\$end
\$frpcon

```
cpl = 2., crdt = 0.0, thkcld = 0.0224, thkgap = 0.0033,
dco = 0.374, pitch = 0.5,nplot=1,
rc = 0.0492, fotmtl = 1.997,dishsd=0.0652,
den = 95.34, dspg = 0.3,fa = 1.,
idxgas =1,
dspgw = 0.03, enrch = 0.253, fgpav = 382, hdish = 0.011,
hplt = 0.5, icm = 4, imox = 1, comp = 5.931,
iplant =-2, iq = 0, jdlpr = 0,
jn = 5,5,
totl = 1.48, roughc = 3.94e-5, roughf = 7.9e-5, vs = 10.0,
nunits = 1, rsntr = 70., nsp = 1,
p2(1) = 25*2250., p2(26) = 37*500.,
tw(1) = 25*570, tw(26) = 37*464.,
go(1) = 62*0.0,
jst = 62*1,
qf(1) = 1.0, 1.0, 1.0, 1.0, 1.0
x(1) = 0.0, 0.37, 0.74, 1.11, 1.48
qf(6) = 0.9, 1.0, 1.1, 1.0, 0.9
x(6) = 0.0, 0.37, 0.74, 1.11, 1.48
ProblemTime=
0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 30., 60., 90., 120.,
150., 180., 210., 240., 270.,
300., 331., 360., 390., 420.,
450., 490., 530., 560., 587.,
588.3, 590.4, 592.5, 593.5, 594.6, 595.9, 596.6, 599,
601.3, 604.3, 605.9, 607.1, 609.2, 618.8, 627.3, 632.3,
640.2, 641.9, 643, 651.5, 658, 660.2, 669.8, 673.8, 674.8,
678, 679.9, 686.6, 690.4, 692.3, 693, 696.3, 697.4, 699.3,
700.3, 704.3, 706.8
qmpy =
1,2,3,4,5,
6., 4*6.6,
10*6.6,
5*6.6,
5.73, 3.90, 6.98, 7.21, 7.39, 7.59, 8.66, 9.01,
9.18, 9.14, 10.03, 9.97, 8.93, 8.84, 8.78, 8.78,
8.66, 6.00, 7.10, 7.10, 7.05, 7.27, 7.32, 7.19,
7.62, 7.56, 7.13, 7.35, 7.35, 7.10, 7.28, 7.19,
6.95,6.95, 7.16, 6.98, 6.60,
slim = .05,
$end
$frpmox
enrpu39 = 61.47, enrpu40 = 24.67, enrpu41 = 9.06,
enrpu42 = 4.80,
$end
```


A. 11 Halden IFA-610 Rods

One segment from four-cycle PWR MOX EdF rod N016 (which was base-irradiated for four cycles in the French Gravelines-4 reactors to a burnup of approximately 55 megawatt-days per kilogram of metal $(\mathrm{MWd} / \mathrm{kgM})$) was re-fabricated and instrumented for use in the sequential IFA-610.2,4 cladding liftoff experiments (Beguin 1999) (Fujii and Claudel 2001). The rod was tested under simulated PWR conditions in a pressurized water loop within the Halden reactor. The rod was connected to a gas supply system, and temperature measurements were made in both helium and argon fill gases at varying pressures. Fuel temperature data from helium gas fill periods were used to assess the FRAPCON-3.4 temperature predictions.

The rod was base-irradiated at nominal LHGRs for ~ 1500 days. The final burnup for the segment was $54.5 \mathrm{MWd} / \mathrm{kgM}$. The rod was instrumented with a fuel center thermocouple and a rod elongation sensor. Internal gas pressure was varied throughout the ~ 100 day IFA-610.2 test to investigate the threshold for cladding liftoff. The LHGR level during the IFA-610.2 test was steady at about 14 to $15 \mathrm{~kW} / \mathrm{m}$, and LHGR at the thermocouple was about 13.5 to $14 \mathrm{~kW} / \mathrm{m}$.

In IFA-610.4, the LHGRs were similar at the beginning and drifted downward to 12.5 and $12.0 \mathrm{~kW} / \mathrm{m}$ for rod-average and thermocouple location, respectively (Fujii and Claudel, 2001). The test duration was similar to that of IFA-610.2 (100 days); however, after 50 days, questions of potential thermocouple degradation were raised, and code data comparison was only conducted over the first 50 days of the test.

These two experiments were used to assess the FRAPCON-3.4 temperature predictions for MOX as a function of burnup. The input files used for the MOX temperature assessments are shown below.

IFA-610.2

* GOESINS:
FILEO5='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
CARRIAGE CONTROL='NONE'
*
* GOESOUTS:

FILE06='ifa610-2ext.out', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='ifa610-2ext.plot', STATUS='UNKNOWN', FORM='FORMATTED', CARRIAGE CONTROL='LIST'

Refab.Gravelines PWR 4-Cycle Segment, extended history from HWR-603
\$frpen
im=66, na=4,
mechan $=2$, ngasr $=45$,
\$end
\$frpcon
$\mathrm{cpl}=2 ., \mathrm{crdt}=0.0, \operatorname{thkcld}=0.0224$, thkgap $=0.0033$,
dco $=0.374$, pitch $=0.5$, nplot=1,
rc $=0.0453$, fotmtl $=1.997$, dishsd=0.06488,
den $=94.43$, $\mathrm{dspg}=0.3$, fa $=1$. ,
dspgw $=0.03$, enrch $=0.229$, fgpav $=382$, hdish $=0.011$,
hplt $=0.5$, icm $=4$, imox $=1, ~ c o m p=5.945$,
idxgas $=1$, iplant $=-2$, iq $=0, j d l p r=0$,
$j n=5,5$,
totl $=1.31$, roughc $=3.94 e-5$, roughf $=7.9 \mathrm{e}-5, \mathrm{vs}=10.0$,
nunits $=1$, rsntr $=52 ., n s p=1$,

```
p2(1) = 44*2250., p2(45) = 22*2352,
tw(1) = 44*570, tw(45) = 22*590
go(1) = 66*2.0e6,
jst =66*1
qf(1) = 1.0, 1.0, 1.0, 1.0, 1.0
x(1) = 0.0, 0.3275, 0.6650, 0.9925, 1.31
qf(6) = 0.9, 1.0, 1.1, 1.0, 0.9
x(6) = 0.0, 0.3275, 0.6650, 0.9925, 1.31
ProblemTime=
0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 30., 60., 90., 120.,
150., 180., 210., 240., 270.,
300., 331., 360., 390., 420.,
450., 480., 510., 540., 570.,
600., 625., 650., 700., 750.,
800., 850., 900., 945., 990.,
1000., 1050., 1100., 1150., 1200.,
1250., 1300., 1350., 1400
1401., 1402., 1403., 1404., 1405.,
1406.
1407., 1408., 1409., 1416.,1422.7,
1422.8, 1424.8,1424.9, 1440., 1457.3,
1460.2, 1468.5, 1472.7,1489.3, 1506.0,
1516.4
qmpy =
0.9, 1.8, 2.7, 3.6, 4.5, 5.4, 6.03 6.3, 6.03, 6.03, 6.03,
6.03, 6.03, 6.03, 6.03, 6.03, 6.03, 6.3, 6.3, 6.3, 6.3,
6.3, 6.3, 6.3, 6.3, 6.3, 6.3, 6.3, 5.22, 5.22, 5.22, 5.22,
5.22, 5.22, 5.22, 3.699, 3.699, 3.699, 3.699, 3.699, 3.699,
3.699, 3.699, 3.699, 3.6, 3.15, 2.7, 2.25, 1.8, 1.35,
2.5, 3.5, 4.11, 4.27,4.27
4.57, 4.57,4.27, 4.27, 4.27,
3.05,4.42,4.33,4.24, 4.18,
4.05
slim = .05,
$end
$frpmox
enrpu39 = 65.83, enrpu40 = 23.45, enrpu41 = 7.39,
enrpu42 = 3.33
$end
```


IFA-610.4

* GOESINS:

FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED', CARRIAGE CONTROL='NONE'
\star

* GOESOUTS:

FILE06='ifa610-4ext.out', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='ifa610-4ext.plot', STATUS='UNKNOWN', FORM='FORMATTED', CARRIAGE CONTROL='LIST'

Refab.Gravelines PWR 4-Cycle Segment, extended power history
\$frpen
im=65, na=4,
mechan $=2$, ngasr $=45$,
\$end
\$frpcon

```
cpl = 2., crdt = 0.0, thkcld = 0.0224, thkgap = 0.0033,
dco = 0.374, pitch = 0.5,nplot=1,
rc = 0.0453, fotmtl = 1.997,dishsd=0.06488,
den = 94.43, dspg = 0.3,fa = 1.,
dspgw = 0.03, enrch = 0.229, fgpav = 382, hdish = 0.011,
hplt = 0.5, icm = 4, imox = 1, comp = 5.945,
idxgas = 1, iplant =-2, iq = 0, jdlpr = 0,
jn = 5,5,
totl = 1.31, roughc = 3.94e-5, roughf = 7.9e-5, vs = 10.0,
nunits = 1, rsntr = 52., nsp = 1,
p2(1) = 45*2250., p2(46) = 20*2352,
tw(1) = 45*570, tw(46) = 20*590
go(1) = 65*2.0e6,
jst = 65*1
qf(1) = 1.0, 1.0, 1.0, 1.0, 1.0
x(1) = 0.0, 0.3275, 0.6650, 0.9925, 1.31
qf(6) = 0.9, 1.0, 1.1, 1.0, 0.9
x(6) = 0.0, 0.3275, 0.6650, 0.9925, 1.31
ProblemTime=
0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 30., 60., 90., 120.,
150., 180., 210., 240., 270.,
300., 331., 360., 390., 420.,
450., 480., 510., 540., 570.,
600., 625., 650., 700., 750.,
800., 850., 900., 945., 990.,
1000., 1050., 1100., 1150., 1200.,
1250., 1300., 1350., 1400., 1450.,
1451., 1452., 1453,
1454., 1455., 1456.
1456.42, 1457.25, 1458.29, 1460.17, 1462.46,
1465.58, 1471.83, 1476.83, 1485.17, 1495.68,
1495.79, 1497.67, 1501.83, 1506.0
qmpy =
1,2,3,4,5,
6., 6.7, 6.7, 6.7, 6.7,
5*6.7
6.7, 6.7, 7.0, 7.0, 7.0,
5*7.0,
7.0, 7.0, 7.0, 5.8, 5.8,
5*5.8,
5*4.11,
4.11, 4.11, 4.27, 4.27, 4.27,
4.0, 3.5, 3.0,
2.5, 2.0, 1.5,
2.59, 3.17, 3.48, 3.90, 4.33,
4.33, 4.12, 3.99, 3.87, 3.84,
3.96, 3.93, 3.81,3.81
slim = .05,
$end
$frpmox
enrpu39 = 65.83, enrpu40 = 23.45, enrpu41 = 7.39,
enrpu42 = 3.33,
$end
```


A.12 Halden IFA-648.1 Rods

The IFA-648.1 irradiation (Claudel and Huet 2001) was simply a burnup extension at low LHGR for two refabricated instrumented segments from Gravelines-4 four-cycle PWR MOX rods, one segment each from rods N12 and P16. The irradiation was carried on at low LHGR under simulated PWR conditions in a pressurized water loop within the Halden reactor. The rods were then power-ramped in the follow-on IFA-629.3 test to investigate FGR and rod elongation behavior.

The mother rods were base-irradiated at nominal LHGRs for ~ 1200 days. The final burnup
for the rods N12 and P16 were 57 and $53 \mathrm{MWd} / \mathrm{kgM}$, respectively. The two rods were instrumented differently upon refabrication. Rod 1 carried a fuel center thermocouple and a rod elongation sensor. Rod 2 carried a fuel center thermocouple and a pressure transducer. The LHGRs were kept deliberately low to accumulate more burnup without inducing FGR.

These two rods were used to assess the FRAPCON-3.4 temperature predictions for MOX as a function of burnup. The input files used for the MOX temperature assessments are shown below.

IFA-648.1 Rod 1

* Goesins:

FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED', CARRIAGE CONTROL='NONE'
*

* GOESOUTS:

FILE06='ifa648r1ext.out', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='ifa648r1ext.plot', STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'

```
/*************************************************************************
```

Refab.Gravelines PWR 4-Cycle Segment IFA-648.1 Rod 1 Extended Power History
\$frpen
im= 63, na=4,
mechan $=2$, ngasr $=45$,
\$end
\$frpcon
cpl = 5., crdt $=0.0$, thkcld $=0.0224$, thkgap $=0.0033$,
dco $=0.374$, pitch $=0.5$, dishsd $=0.0655$,
rc $=0.0492$, fotmtl $=1.996$,
den $=94.72, \mathrm{dspg}=0.3, \mathrm{fa}=1 .$,
dspgw $=0.03$, enrch $=0.231$, fgpav $=382$, hdish $=0.0115$,
hplt $=0.4634, i c m=4, i m o x=1, ~ c o m p=5.931$,
idxgas $=1$, iplant $=-2$, iq $=0, j d l p r=0$,
jn $=5,5$, nplot $=1$,
totl $=1.49$, roughc $=3.94 \mathrm{e}-5$, roughf $=7.9 \mathrm{e}-5, \mathrm{vs}=10.0$,
nunits $=1$, rsntr $=8.9, \mathrm{nsp}=1$,
$\mathrm{p} 2(1)=33 * 2250 ., \mathrm{p} 2(34)=30 * 2350$. ,
$\operatorname{tw}(1)=33 * 580, \operatorname{tw}(34)=7 * 599 .$,
$\operatorname{tw}(41)=13 * 608 ., \operatorname{tw}(54)=10 * 617 .$,
go (1) $=63 * 2.0 \mathrm{E} 6$,
jst $=63 * 1$,
$\mathrm{qf}(1)=1.0,1.0,1.0,1.0,1.0$
$x(1)=0.0,0.37,0.74,1.11,1.49$
$q f(6)=0.9,1.0,1.1,1.0,0.9$
$x(6)=0.0,0.37,0.74,1.11,1.49$

```
ProblemTime=
0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 50., 100., 150., 200.,
250., 300., 323., 350., 400.,
450., 522., 550., 600., 623.,
650., 700., 750., 792., 850.,
900., 950., 1000., 1050., 1100.,
1150., 1200., 1251., 1252., 1253.,
1254., 1255., 1256.
1260., 1265.5, 1273.8, 1281.0,1295.6,
1310.1,1326.0, 1342., 1361., 1371.,
1381., 1392., 1414., 1429., 1459.,
1486., 1495., 1513., 1556., 1578.
1579, 1580, 1581, 1582, 1583
qmpy =
1., 2., 3., 4., 6.,
7., 4*7.01,
3*7.01, 7.32, 7.32,
5*7.32,
5*6.10,
2*6.10, 3*3.96,
3*3.96, 3.5, 3.0,
2.5, 2.0, 1.5,
2.5, 3.14, 3.44,3.35, 3.11,
3.18,2.80, 2.87, 2.93, 3.01,
2.83, 2.74, 3.05, 2.98, 3.01,
3.05, 3.14, 3.11, 3.14, 2.79,
2.50, 2.25, 2.00, 1.75, 1.50
slim = .05,
$end
$frpmox
enrpu39 = 65.84, enrpu40 = 23.40, enrpu41 = 7.43,
enrpu42 = 3.33,
$end
```


IFA-648.1 Rod 2

* GOESINS:

FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED', CARRIAGE CONTROL='NONE'
*

* GOESOUTS:

FILE06='ifa648r2tcext.out', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='ifa648r2tcext.plot', STATUS='UNKNOWN', FORM='FORMATTED', CARRIAGE CONTROL='LIST'
/***)
Refab. Gravelines PWR 4-Cycle Segment IFA-648rod 2 (Mother Rod P16)
\$frpen
im=52, na=4,
mechan $=2$, ngasr $=45$,
\$end
\$frpcon
$\mathrm{cpl}=1.2, \mathrm{crdt}=0.0, \mathrm{thkcld}=0.0224$, thkgap $=0.0033$,
dco $=0.374$, pitch $=0.5$, dishsd $=0.0634$,
rc $=0.0492$, fotmtl $=2.000$, nplot=1,
den $=94.62, \mathrm{dspg}=0.3, \mathrm{fa}=1.0$,
dspgw $=0.03$, enrch $=0.225$, fgpav $=382 .$, hdish $=0.0115$,
hplt $=0.4634, i c m=4, i m o x=1, ~ c o m p=4.688$,

```
idxgas = 1, iplant =-2, iq = 0, jdlpr = 0,
jn = 5,
totl = 1.49, roughc = 3.94e-5, roughf = 7.9e-5, vs = 10.0,
nunits = 1, rsntr = 40., nsp = 1,
p2(1) = 33*2250., p2(34) = 19*2350.,
tw(1) = 33*580., tw(34) = 7*599.,
tw(41) = 8*608., tw(49) = 4*617
go(1) = 33*2.0E6, go(34) = 19*0.0
jst = 52*1
qf(1) = 1.0, 1.0, 1.0, 1.0, 1.0
x(1) = 0.0, 0.37, 0.74, 1.11, 1.49
ProblemTime=
0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 40., 80., 120., 160.,
210., 260., 306., 320., 340.,
380., 430., 480., 540., 608.,
650., 700., 750., 800., 850.,
900., 922., 970., 1020., 1070.,
1120., 1170., 1207.,
1216.5, 1224.8, 1232.0, 1246.6, 1261.1,
1277.0, 1293.0, 1312.0, 1322.0, 1332.0,
1343.0, 1365.0, 1380.0, 1410.0, 1437.0,
1447.0, 1464.0, 1507.0, 1529.0
qmpy =
1., 2., 3., 4., 6.,
7., 4*7.62,
3*7.62, 7.47, 7.47,
5*7.47,
5*6.10,
2*6.10, 3*4.57,
3*4.57,
2.88, 3.20, 3.14, 2.91, 2.97,
2.62, 2.68, 2.74, 2.81, 2.65,
2.55, 2.85, 2.77, 2.81, 2.86,
2.91, 2.88, 2.93, 2.59
slim = .05,
$end
$frpmox
enrpu39 = 65.99, enrpu40 = 23.45, enrpu41 = 7.08,
enrpu42 = 3.48,
$end
```


A.13 Halden IFA-629.3 Rods

Following base irradiation in a commercial PWR and further irradiation in Halden, two rods were further irradiated from $62 \mathrm{GWd} / \mathrm{MTU}$ to 68 to $72 \mathrm{GWd} / \mathrm{MTU}$. The MOX fuel was fabricated using the MIMAS (micronized master blend) process. The documentation does not mention whether the UO_{2} was fabricated using the ammonium diuranate (ADU) or ammonium uranyl carbonate (AUC) process, but it is likely that the AUC process was used because the fuel was fabricated in the early 1990s. The MOX rods in IFA629.3 (Petiprez 2002) were irradiated for four cycles in the Gravelines-4 PWR; after this period, two experimental rods were refabricated from the full-length rods, refilled with helium, and loaded in the IFA 648.1 rig to accumulate more burnup at low powers and no additional gas release. Following irradiation in IFA-648.1, rod 6 was punctured and refilled with helium and the two rods were irradiated in IFA-629.3. These rods were irradiated up to a final burnup of 68 and $72 \mathrm{GWd} / \mathrm{MTM}$ and discharged for PIE. The measured gas release values for these rods have been obtained by puncture measurement.

These two rods were used to assess the FRAPCON-3.4 temperature predictions for MOX as a function of burnup and the MOX FGR predictions. The input files used for the MOX temperature and FGR assessments are shown below. Input files that include the central hole were used for the temperature assessment since the temperature was measured on hollow pellets. Input files that do not include the central hole were used for the FGR assessment since most of the fuel column consisted of solid pellets.

```
IFA-629.3 Rod 5 FGR Case
* GOESINS:
FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
                CARRIAGE CONTROL='NONE'
*
* GOESOUTS:
FILE06='IFA-629-3R5.out',
        STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='IFA-629-3R5.plot',
                STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'
/************************************************************************
IFA-629.3 Rod 5
    $frpcn
    im=99, nr=17, ngasr=45, na=9
    $end
    $frpcon
    dco=0.374, thkcld=0.02244, thkgap=0.00329, totl=1.48819, cpl=2.1378
    dspg=0.315, dspgw=0.0394, vs=10, igas=40
    hplt=0.4685, rc=0, hdish=0.0114, dishsd=0.0648
    enrch=0.231, imox=1, comp=5.93
    fotmtl=1.996, gadoln=0, ppmh2o=0, ppmn2=0
    den=94.72, deng=0, roughf=0.0000787, rsntr=100, tsint=2911
    icm=4, cldwks=0.5, roughc=0.0000197, catexf=0.05, chorg=10
    fgpav=326.34, idxgas=1
iplant=-2, pitch=0.3937, icor=0, crdt=0, crdtr=0, flux=10*221000000000000000
    crephr=10, sgapf=31, slim=0.05, qend=0.3
    jdlpr=1, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
    ProblemTime=
    16.92, 25.63, 48.38, 74.08, 98.39
    127.57, 151.7, 224.34, 244.61, 271.24
    293.58, 314.8, 330.71, 357.1, 391.25
    419.43, 480.58, 521.01, 571.28, 597.8
```

```
614.33, 630.17, 647.82, 675.1, 762.99
793.5, 889.19, 910.83, 932.87, 941.53
950.68, 976.64, 1052.39, 1079.85, 1122.66
1185.71, 1209.33, 1222.23, 1230.37, 1234.4
1235.6, 1242.4, 1253.9, 1255.4, 1294.4
1299.4, 1354.9, 1372.4, 1380.6, 1395.6
1463.9, 1466.7, 1473.8, 1477.2, 1518.4
1520.6, 1529.4, 1530.9, 1552.9, 1566.9
1567.9, 1568.53, 1568.81, 1568.94, 1569.47
1570.88, 1571.47, 1572.66, 1573.8, 1574.59
1575.71, 1576.57, 1577.61, 1578.7, 1579
1579.45, 1579.75, 1580.63, 1581.39, 1582.12
1583.06, 1583.69, 1584.15, 1584.71, 1585.77
1586.8, 1587.18, 1590.4, 1598.39, 1613.84
1617.86, 1622.08, 1633.64, 1646.73, 1655.18
1658.08, 1659.36, 1679.17, 1681.19
qmpy=
4.42, 8.626, 8.443, 8.321, 8.321
8.23, 8.199, 8.153, 8.184, 7.651
7.163, 6.035, 4.023, 8.108, 8.138
8.108, 8.138, 8.169, 8.077, 7.681
7.041, 6.431, 3.627, 7.254, 7.285
7.01, 7.041, 6.858, 6.34, 6.218
2.225,4.542,4.648,4.663,4.724
4.755,4.496, 4.176, 3.932, 2.134
1.737, 3.383, 3.566, 3.505, 3.322
2.499, 2.957, 2.85, 1.951, 3.216
3.124, 2.377, 3.383, 2.438, 3.353
2.682, 3.292, 2.987, 3.277, 3.048
1.615, 2.7, 2.792, 3.301, 2.184
2.143, 3.335, 1.334, 0.988, 3.713
4.263, 4.249, 4.734, 5.009, 1.954
3.799, 5.819, 5.938, 0.408, 2.327
0.13, 2.843, 4.653, 5.551, 5.856
6.458, 7.012, 6.894, 7.213, 5.383
6.625, 6.505, 5.765, 5.885, 5.544
3.173, 5.404, 5.047, 5.078
nsp=1
p2=
2250, 2250, 2250, 2250, 2250
2250, 2250, 2250, 2250, 2250
2250, 2250, 2250, 2250, 2250
2250, 2250, 2250, 2250, 2250
2250, 2250, 2250, 2250, 2250
2250, 2250, 2250, 2250, 2250
2250, 2250, 2250, 2250, 2250
2250, 2250, 2250, 2250, 2350
2350, 2350, 2350, 2350, 2350
2350, 2350, 2350, 2350, 2350
2350, 2350, 2350, 2350, 2350
2350, 2350, 2350, 2350, 2350
2350, 493, 493, 493, 493
493, 493, 493, 493, 493
493, 493, 493, 493, 493
493, 493, 493, 493, 493
493, 493, 493, 493,493
493, 493, 493, 493,493
```

```
493, 493, 493, 493, 493
493, 493, 493, 493
tw=
580, 580, 580, 580, 580
580, 580, 580, 580, 580
580, 580, 580, 580, 580
580, 580, 580, 580, 580
580, 580, 580, 580, 580
580, 580, 580, 580, 580
580, 580, 580, 580, 580
580, 580, 580, 580, 590
590, 590, 590, 590, 590
590, 590, 590, 590, 590
590, 590, 590, 590, 590
590, 590, 590, 590, 590
590, 455, 455, 455, 455
455, 455, 455, 455, 455
455, 455, 455, 455, 455
455, 455, 455, 455, 455
455, 455, 455, 455, 455
455, 455, 455, 455, 455
455, 455, 455, 455, 455
455, 455, 455, 455
go=
2000000, 2000000, 2000000, 2000000, 2000000
2000000, 2000000, 2000000, 2000000, 2000000
2000000, 2000000, 2000000, 2000000, 2000000
2000000, 2000000, 2000000, 2000000, 2000000
2000000, 2000000, 2000000, 2000000, 2000000
2000000, 2000000, 2000000, 2000000, 2000000
2000000, 2000000, 2000000, 2000000, 2000000
2000000, 2000000, 2000000, 2000000, 2000000
2000000, 2000000, 2000000, 2000000, 2000000
2000000, 2000000, 2000000, 2000000, 2000000
2000000, 2000000, 2000000, 2000000, 2000000
2000000, 2000000, 2000000, 2000000, 2000000
2000000, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0, 0
iq=0, fa=1
x(1)=
0, 0.08202, 0.24606, 0.4101, 0.57415
0.73819, 0.90223, 1.06627, 1.23031, 1.39436
1.48819
qf(1)=
1, 1, 1, 1, 1
1, 1, 1, 1, 1
    1
x(12)=
0, 0.08202, 0.24606, 0.4101, 0.57415
0.73819, 0.90223, 1.06627, 1.23031, 1.39436
1.48819
```

```
qf(12)=
183.3, 185.9, 188.5, 192.2, 194
194.4, 194.1, 193, 192.2, 190
    188.5
jn=11,11
jst=
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2
$end
$frpmox
enrpu39=65.84, enrpu40=23.399, enrpu41=7.427, enrpu42=3.334
$end
```


IFA-629.3 Rod 6 FGR Case

```
* GOESINS:
FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
    CARRIAGE CONTROL='NONE'
*
* GOESOUTS:
FILE06='IFA-629-3R6.out',
        STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='IFA-629-3R6.plot',
                STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'
/***************************************************************************
IFA-629.3 Rod 6
    $frpcn
    im=99, nr=17, ngasr=45, na=9
    $end
    $frpcon
    dco=0.374, thkcld=0.02244, thkgap=0.00335, totl=1.48064, cpl=2.0866
    dspg=0.315, dspgw=0.0394, vs=10, igas=62
    hplt=0.4685, rc=0, hdish=0.0114, dishsd=0.0628
    enrch=0.225, imox=1, comp=4.69
    fotmtl=1.996, gadoln=0, ppmh2o=0, ppmn2=0
    den=94.62, deng=0, roughf=0.0000787, rsntr=100, tsint=2911
    icm=4, cldwks=0.5, roughc=0.0000197, catexf=0.05, chorg=10
    fgpav=319.08, idxgas=1
    iplant=-2, pitch=0.3937, icor=0, crdt=0, crdtr=0, flux=10*221000000000000000
    crephr=10, sgapf=31, slim=0.05, qend=0.3
```

```
jdlpr=1, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
ProblemTime=
15.48, 26.04, 50.32, 78.34, 96.45
126.1, 148.63, 185.75, 240.55, 270.24
290.97, 314.17, 330.67, 357.73, 390.9
418.83, 449.95, 476.91, 517.17, 569.5
596.57, 629, 641.65, 669.6, 703.1
723.23, 755.93, 786.15, 807.42, 881.54
903.69, 923.5, 930.7, 949.98, 980.5
1078.89, 1181.26, 1207.06, 1233.56, 1237.56
1238.76, 1245.56, 1257.06, 1258.56, 1297.56
1302.56, 1358.06, 1375.56, 1383.76, 1398.76
1467.06, 1469.86, 1476.96, 1480.36, 1521.56
1523.76, 1532.56, 1534.06, 1556.06, 1570.06
1571.06, 1571.69, 1571.97, 1572.1, 1572.63
1574.04, 1574.63, 1575.82, 1576.96, 1577.75
1578.87, 1579.73, 1580.77, 1581.86, 1582.16
1582.61, 1582.91, 1583.79, 1584.55, 1585.28
1586.22, 1586.85, 1587.31, 1587.87, 1588.93
1589.96, 1590.34, 1593.56, 1601.55, 1617
1621.02, 1625.24, 1636.8, 1649.89, 1658.34
1661.24, 1662.52, 1682.33, 1684.35
qmpy=
4.115, 8.077, 7.864, 7.772, 7.651
7.681, 7.544, 7.468, 7.346, 7.559
7.163, 6.401, 3.901, 7.803, 7.712
7.62, 7.529, 7.468, 7.376, 7.315
7.437, 6.919, 3.261, 6.492, 6.355
6.309, 6.157, 6.005, 5.974, 5.944
6.035, 5.913, 5.73, 2.225, 4.542
4.511, 4.481, 4.542, 4.42, 1.829
1.433, 3.139, 3.307, 3.231, 3.109
2.042, 2.743, 2.652, 1.463, 2.972
2.941, 1.89, 3.155, 2.134, 3.139
2.438, 3.048, 2.804, 3.048, 2.804
1.311, 2.435, 2.652, 3.121, 2.037
2.006, 3.161, 1.316, 0.948, 3.52
4.017, 4.061, 4.52, 4.782, 1.841
3.618, 5.557, 5.661, 0.387, 2.222
0.122, 2.765, 4.633, 5.56, 5.883
6.639, 7.041, 6.864, 7.221, 5.31
6.474, 6.349, 5.678, 5.81, 5.496
3.183, 5.37, 4.977, 4.974
nsp=1
p2=
2250, 2250, 2250, 2250, 2250
2250, 2250, 2250, 2250, 2250
2250, 2250, 2250, 2250, 2250
2250, 2250, 2250, 2250, 2250
2250, 2250, 2250, 2250, 2250
2250, 2250, 2250, 2250, 2250
2250, 2250, 2250, 2250, 2250
2250, 2250, 2250, 2250, 2350
2350, 2350, 2350, 2350, 2350
2350, 2350, 2350, 2350, 2350
2350, 2350, 2350, 2350, 2350
2350, 2350, 2350, 2350, 2350
```

```
2350, 493, 493, 493, 493
493, 493, 493, 493, 493
493, 493, 493, 493, 493
493, 493, 493, 493, 493
493, 493, 493, 493, 493
493, 493, 493, 493, 493
493, 493, 493, 493, 493
493, 493, 493, 493
tw=
580, 580, 580, 580, 580
580, 580, 580, 580, 580
580, 580, 580, 580, 580
580, 580, 580, 580, 580
580, 580, 580, 580, 580
580, 580, 580, 580, 580
580, 580, 580, 580, 580
580, 580, 580, 580, 590
590, 590, 590, 590, 590
590, 590, 590, 590, 590
590, 590, 590, 590, 590
590, 590, 590, 590, 590
590, 455, 455, 455, 455
455, 455, 455, 455, 455
455, 455, 455, 455, 455
455, 455, 455, 455, 455
455, 455, 455, 455, 455
455, 455, 455, 455, 455
455, 455, 455, 455, 455
455, 455, 455, 455
go=
2000000, 2000000, 2000000, 2000000, 2000000
2000000, 2000000, 2000000, 2000000, 2000000
2000000, 2000000, 2000000, 2000000, 2000000
2000000, 2000000, 2000000, 2000000, 2000000
2000000, 2000000, 2000000, 2000000, 2000000
2000000, 2000000, 2000000, 2000000, 2000000
2000000, 2000000, 2000000, 2000000, 2000000
2000000, 2000000, 2000000, 2000000, 2000000
2000000, 2000000, 2000000, 2000000, 2000000
2000000, 2000000, 2000000, 2000000, 2000000
2000000, 2000000, 2000000, 2000000, 2000000
2000000, 2000000, 2000000, 2000000, 2000000
2000000, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0, 0
iq=0, fa=1
x(1)=
0, 0.08202, 0.24606, 0.4101, 0.57415
0.73819, 0.90223, 1.06627, 1.23031, 1.39436
1.48064
qf(1)=
1, 1, 1, 1, 1
```

```
1, 1, 1, 1, 1
            1
    x(12)=
    0, 0.08202, 0.24606, 0.4101, 0.57415
    0.73819, 0.90223, 1.06627, 1.23031, 1.39436
    1.48064
    qf(12)=
    183.3, 185.9, 188.5, 192.2, 194
    194.4, 194.1, 193, 192.2, 190
        188.5
    jn=11,11
    jst=
    1, 1, 1, 1, 1
    1, 1, 1, 1, 1
    1, 1, 1, 1, 1
    1, 1, 1, 1, 1
    1, 1, 1, 1, 1
    1, 1, 1, 1, 1
    1, 1, 1, 1, 1
    1, 1, 1, 1, 2
    2, 2, 2, 2, 2
    2, 2, 2, 2, 2
    2, 2, 2, 2, 2
    2, 2, 2, 2, 2
    2, 2, 2, 2, 2
    2, 2, 2, 2, 2
    2, 2, 2, 2, 2
    2, 2, 2, 2, 2
    2, 2, 2, 2, 2
    2, 2, 2, 2, 2
    2, 2, 2, 2, 2
    2, 2, 2, 2
    $end
    $frpmox
    enrpu39=65.84, enrpu40=23.399, enrpu41=7.427, enrpu42=3.334
    $end
```


IFA-629.3 Rod 5 Temperature Case

* GOESINS:

```
FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
    CARRIAGE CONTROL='NONE'
*
* GOESOUTS:
FILE06='ifa629-3r5ext.out', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='ifa629-3r5ext.plot', STATUS='UNKNOWN', FORM='FORMATTED',
    CARRIAGE CONTROL='LIST'
/******************************************************************************
        Refab.Gravelines PWR 4-Cycle Segment IFA-629.3rod 5(Mother Rod N12)
    $frpon
    im=126, na=4,
    mechan = 2, ngasr = 45,
    $end
    $frpcon
    cpl = 1.5, crdt = 0.0, thkcld = 0.0224, thkgap = 0.0033,
    dco = 0.374, pitch = 0.5, dishsd = 0.0655,
    rc = 0.0492, fotmtl = 1.996,nplot=1,
    den = 94.72, dspg = 0.3, fa = 1.0,
```

```
dspgw = 0.03, enrch = 0.231, fgpav = 382., hdish = 0.0115,
hplt = 0.4634, icm = 4, imox = 1, comp = 5.931,
idxgas = 1, iplant =-2, iq = 0, jdlpr = 0,
jn = 5,5, 5
totl = 1.49, roughc = 3.94e-5, roughf = 5.0e-5, vs = 10.0,
nunits = 1, rsntr = 8.9, nsp = 1,
p2(1) = 33*2250., p2(34) = 10*2350., p2(44) = 83*500.,
tw(1) = 33*580., tw(34) = 10*590., tw(44) = 83*464.,
go(1) = 43*2.0E6, go(44) = 83*0.0
jst = 33*1, 10*2, 83*3
qf(1) = 1.0, 1.0, 1.0, 1.0, 1.0
x(1) = 0.0, 0.37, 0.74, 1.11, 1.49
qf(6) = 0.9, 1.0, 1.1, 1.0, 0.9
x(6) = 0.0, 0.37, 0.74, 1.11, 1.49
qf(11) = 0.97, 1.0, 1.01, 1.0, 0.99
x(11) = 0.0, 0.37, 0.74, 1.11, 1.49
ProblemTime=
0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 40., 80., 120., 160.,
200., 230., 293., 300., 340.,
380., 430., 480., 540., 587.,
630., 680., 720., 760., 800.,
840., 883., 920., 970., 1020.,
1070., 1120., 1175., 1200., 1233.6,
1280., 1312., 1360., 1400., 1430.,
1460., 1483., 1497.,
1497.53,1497.89,1498.42,1498.60,
1500.20,1500.30,1500.55,1501.97,
1502.86,1503.39,1504.46,1505.34,
1506.23,1507.65,1509.78,1510.49,
1510.85,1511.02,1511.20,1511.91,
1512.27,1512.62,1512.80,1513.33,
1513.86,1515.28,1515.99,1516.53,
1519.01,1520.61,1521.50,1524.16,
1526.64,1527.18,1530.91,1534.99,
1536.59,1540.85,1542.27,1543.69,
1544.22,1544.75,1545.99,1546.88,
1548.66,1551.14,1551.32,1551.85,
1552.03,1552.21,1552.56,1552.92,
1553.09,1554.51,1557.18,1558.78,
1561.44,1562.86,1565.52,1570.31,
1575.82,1576.70,1578.48,1580.61,
1584.51,1584.69,1585.58,1586.47,
1587.36,1587.71,1588.07,1588.60,
1590.37,1593.04,1596.41,1601.91,
1605.46,1607.95,1609.19,1609.60,
1609.72,1610.08,1610.61,1610.96
qmpy =
1., 2., 3., 4., 6.,
7., 4*8.53,
3*8.53, 8.23, 8.23,
5*8.23,
5*7.32,
2*7.32, 3*3.96,
3*3.96, 2.89, 2.89,
2.49, 2.49, 2.63, 2.63, 2.63,
2.63, 2.63, 2.36,
```

```
2.48,2.57,3.30,2.07,1.87,
3.00,3.13,1.30,0.85,3.56,
3.74,4.09,4.33,4.57,5.53,
0.89,0.80,2.24,1.61,0.94,
0.02,1.98,2.96,4.50,5.13,
5.48,6.11,6.57,6.48,6.77,
6.94,6.81,6.75,6.77,5.11,
5.00,4.90,4.98,4.88,5.25,
5.74,6.16,6.05,5.96,6.16,
6.05,0.33,1.37,1.61,5.79,
5.40,5.22,5.64,5.46,5.37,
5.33,5.25,5.42,5.55,5.51,
5.48,4.66,5.18,5.24,5.14,
1.78,0.50,2.87,4.87,5.25,
5.16,4.98,4.87,4.87,4.85,
4.83,4.76,4.66,0.00,1.28,
4.22,4.55,4.72,2.16
slim = .05,
$end
$frpmox
enrpu39 = 65.84, enrpu40 = 23.40, enrpu41 = 7.43,
enrpu42 = 3.33,
$end
```


IFA-629.3 Rod 6 Temperature Case

* GOESINS:

```
FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
    CARRIAGE CONTROL='NONE'
*
* GOESOUTS:
FILE06='ifa629-3r6ext.out', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='ifa629-3r6ext.plot', STATUS='UNKNOWN', FORM='FORMATTED',
        CARRIAGE CONTROL='LIST'
/**********************************************************************
    Refab.Gravelines PWR 4-Cycle Segment IFA-629.3rod 6 (Mother Rod P16)
$frpcn
im=126, na=9,
mechan = 2, ngasr = 45,
$end
$frpcon
cpl = 1.5, crdt = 0.0, thkcld = 0.0224, thkgap = 0.0033,
dco = 0.374, pitch = 0.5, dishsd = 0.0634,
rc = 0.0492, fotmtl = 1.996,
nplot=1,
den = 94.62, dspg = 0.3, fa = 1.0,
dspgw = 0.03, enrch = 0.225, fgpav = 382., hdish = 0.0115,
hplt = 0.4634, icm = 4, imox = 1, comp = 4.688,
idxgas = 1, iplant =-2, iq = 0, jdlpr = 0,
jn = 5,5, 5
totl = 1.49, roughc = 3.9e-5, roughf = 8.3e-5, vs = 10.0,
nunits = 1, rsntr = 40., nsp = 1,
p2(1) = 33*2250., p2(34) = 10*2350., p2(44) = 83*500.,
tw(1) = 33*580., tw(34) = 10*590., tw(44) = 83*464.,
go(1) = 43*2.0E6, go(44) = 83*0.0
jst = 33*1, 10*3, 83*3
qf(1) = 1.0, 1.0, 1.0, 1.0, 1.0
x(1) = 0.0, 0.37, 0.74, 1.11, 1.49
```

```
qf(6) = 0.9, 1.0, 1.1, 1.0, 0.9
x(6) = 0.0, 0.37, 0.74, 1.11, 1.49
qf(11) = 0.97, 1.0, 1.01, 1.0, 0.99
x(11) = 0.0, 0.37, 0.74, 1.11, 1.49
ProblemTime=
0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 40., 80., 120., 160.,
210., 260., 306., 320., 340.,
380., 430., 480., 540., 608.,
650., 700., 750., 800., 850.,
900., 922., 970., 1020., 1070.,
1120., 1170., 1207., 1225., 1256.6,
1300., 1344., 1380., 1420., 1460.,
1500., 1515., 1529.,
1529.1,1529.18,1529.71,1530.07,1530.78,
1532.20,1532.55,1532.91,1533.97,1534.86,
1536.28,1537.52,1538.59,1540.72,1542.14,
1542.85,1543.38,1543.56,1543.91,1544.44,
1544.80,1545.33,1545.86,1546.93,1547.99,
1548.35,1551.37,1552.79,1554.92,1557.93,
1559.53,1562.91,1566.99,1568.41,1573.02,
1574.80,1575.69,1576.40,1576.75,1577.64,
1578.35,1580.30,1582.96,1584.03,1584.56,
1584.92,1585.45,1586.69,1589.18,1591.13,
1593.44,1594.86,1596.99,1599.12,1600.89,
1602.49,1604.09,1607.82,1609.06,1610.66,
1612.96,1614.74,1616.69,1616.87,1618.64,
1619.53,1619.89,1620.24,1620.60,1621.49,
1624.50,1629.30,1634.44,1637.99,1639.41,
1640.12,1641.37,1641.54,1641.72,1641.8,
1642.43,1642.96,1643.0
qmpy =
1., 2., 3., 4., 6.,
7., 4*7.62,
3*7.62, 7.47, 7.47,
5*7.47,
5*6.10,
2*6.10, 3*4.57,
3*4.57, 2.70, 2.70,
2.33, 2.33, 3*2.45,
2.45, 2.45, 2.21,
1.00, 2.33,2.57,2.98,1.96,
1.72,2.96,2.28,1.22,0.89,
3.57,3.90,4.16,4.46,5.27,
0.80,2.20,1.54,0.91,0.00,
2.94,4.51,5.18,5.48,6.11,
6.57,6.46,6.83,6.85,6.77,
6.79,4.96,4.92,4.87,4.96,
4.87,5.16,5.70,6.05,5.90,
5.81,6.01,5.92,5.66,5.38,
5.18,5.57,5.38,5.27,5.22,
5.22,5.37,5.55,5.51,5.48,
5.46,5.53,5.46,4.61,5.14,
5.18,5.09,5.13,1.74,2.81,
4.87,5.29,5.14,4.98,4.83,
4.81,4.77,4.77,4.64,4.66,
0.00,0.04,1.20,1.33,4.48,
```

```
4.48,4.59,2.15
slim = .05,
$end
$frpmox
enrpu39 = 65.99, enrpu40 = 23.45, enrpu41 = 7.08,
enrpu42 = 3.48,
$end
```


A. 14 Halden IFA-606 Rod

The IFA-606 test assembly (Mertens et al. 1998; Mertens and Lippens 2001) consisted of four refabricated rod segments from a full-length PWR MOX rod irradiated in the Beznau-1 reactor, Switzerland, at nominal LHGRs to a burnup of $50 \mathrm{MWd} / \mathrm{kgM}$. The MOX fuel was fabricated using the MIMAS-AUC process by BN. Two test rods were instrumented with a fuel thermocouple and a pressure transducer, and irradiated under Halden conditions for approximately 30 days at elevated LHGR in "Phase 2 " of the test, to determine FGR behavior. The code-data comparisons presented are for only rod 2 that measured FGR by rod puncture, with a 12.5 micron grain size.

The fuel rod segment was instrumented with a pressure transducer and a fuel centerline thermocouple. The rod was base-irradiated at nominal LHGRs for ~ 1500 days. The rod segment reached a burnup of 49.5 GWd/MTM during commercial operation, with additional 30 days of irradiation in Halden for a total burnup of $50.6 \mathrm{GWd} / \mathrm{MTM}$.

This rod was used to assess the FRAPCON-3.4 temperature predictions for MOX as a function of burnup and the MOX FGR predictions. The input files used for the MOX temperature and FGR assessments are shown below. The input files that include the central hole were used for the temperature assessment since the temperature was measured on hollow pellets. The input file that does not include the central hole was used for the FGR assessment since most of the fuel column consists of solid pellets.

IFA-606 Phase 2 FGR Case

```
* GOESINS:
FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
    CARRIAGE CONTROL='NONE'
*
* GOESOUTS:
FILE06='ifa606notcP2.out', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='ifa606notcP2.plot', STATUS='UNKNOWN', FORM='FORMATTED',
                CARRIAGE CONTROL='LIST'
/*************************************************************************
            Refab.Beznau PWR 5-Cycle Segment for IFA-606 Phase 2
    $frpcn
    im=84, na=18,
    mechan = 2, ngasr = 45,
    $end
    $frpcon
    cpl = 1.4, crdt = 0.0, thkcld = 0.0224, thkgap = 0.0037,
    dco = 0.422, pitch = 0.5,nplot=1,
    rc = 0.0, fotmtl = 1.996,
    den = 95.585, rsntr = 68.0,
    dspg = 0.3, fa = 1., dspgw = 0.03,
    enrch = 0.278, fgpav = 74.11, hdish = 0.0115,
    dishsd = 0.0655
    hplt = 0.4943, icm = 4, imox = 1, comp = 5.970,
    idxgas = 1, iplant =-2, iq = 0, jdlpr = 1, fa = 1.0,
    jn = 5,6,
    totl = 1.31, roughc = 2.48e-5, roughf = 9.84e-5, vs = 10.0,
    nunits = 1, nsp = 1,
    p2(1) = 55*2277., p2(56) = 29*487.,
    tw(1) = 55*543, tw(56) = 29*464.0
    go(1) = 55*1.82e6, 29*0.0
```

```
jst = 55*1, 29*2
qf(1) = 1.0, 1.0, 1.0, 1.0, 1.0
x(1) = 0.0, 0.3275, 0.6650, 0.9925, 1.31
qf(6) = 0.9, 0.9995, 1.0445, 1.062, 0.9959,0.85
x(6) = 0.0, 0.435794, 0.726312, 1.016831, 1.201444,1.31
ProblemTime=
1.5,4.,6.5,36.,88.,
90.,120.,160.,194.5,220.,
250.,280.,299.,302.5,304.5,
306.5,309.,310.,312.5,334.6,
360.,400.,440.,480.,506.,
549.,580.,592.3,594.3,595.3,
620.,650.,685.,706.8,720.,
750.,783.,806.,840.,880.,
898.,930.,970.,1000.,1050.,
1110.,1150.,1200.,1230.,1260.,
1300.,1340.,1390.,1440.,1469.,
1471.5,1472.5,1472.7,1472.9,1473.1,
1473.8,1474.3,1476.3,1477.1,1477.6,
1478.6,1479.6,1480.6,1482.6,1483.6,
1484.6,1486.6,1486.8,1487.3,1487.5,
1488.5,1488.9,1489.2,1490.2,1491.2,
1492.2,1495.0,1495.2,1496.8
qmpy =
1.75,3.65,4.36,4.99,4.93,
3.72,4.85,4.85,4.85,4.82,
4.82,4.82,4.82,3.81,4.43,
5.02,3.68,4.32,4.98,4.94,
4.82,4.82,4.82,4.82,4.82,
4.37,4.45,3.55,5.37,7.25,
7.22,7.22,7.22,7.22,7.27,
7.27,7.27,7.22,7.32,7.32,
7.02,7.31,7.42,7.35,7.35,
7.35,7.2, 7.2, 7.26,7.26,
6.39,6.35,6.01,6.01,6.01,
1.07,4.63,0.85,2.77,7.16,
5.33,5.49,6.95,7.50,6.86,
7.47,7.50,6.77,8.81,8.72,
8.66,9.69,9.60,9.54,9.42,
9.45,9.75,9.91,9.81,9.75,
9.69,6.40,6.40,6.34
slim = .05,
$end
$frpmox
enrpu39 = 65.86, enrpu40 = 23.43, enrpu41 = 7.38,
enrpu42 = 3.33,
$end
```


IFA-606 Phase $\mathbf{2}$ Temperature Case

* GOESINS:

```
FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
    CARRIAGE CONTROL='NONE'
*
* GOESOUTS:
FILE06='ifa606tcP2.out', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='ifa606tcP2.plot', STATUS='UNKNOWN', FORM='FORMATTED',
    CARRIAGE CONTROL='LIST'
```

Refab.Beznau PWR 5-Cycle Segment for IFA-606 Phase 2
\$frpen
im=117, na=4,
mechan $=2$, ngasr $=45$,
\$end
\$frpcon
$\mathrm{cpl}=1.4, \mathrm{crdt}=0.0, \mathrm{thkcld}=0.0224, \operatorname{thkgap}=0.0037$,
dco $=0.422$, pitch $=0.5$, nplot=1,
$r c=0.049213$, fotmtl $=1.996$,
den $=95.585$, rsntr $=68.0$,
$\mathrm{dspg}=0.3, \mathrm{fa}=1 ., \mathrm{dspgw}=0.03$,
enrch $=0.278$, fgpav $=74.11$, hdish $=0.0115$,
dishsd $=0.0655$
hplt $=0.4943$, icm $=4$, imox $=1$, comp $=5.970$,
idxgas $=1$, iplant $=-2$, iq $=0, j d l p r=0, f a=1.0$,
$j n=5,6$,
totl $=1.31$, roughc $=2.48 \mathrm{e}-5$, roughf $=9.84 \mathrm{e}-5, \mathrm{vs}=10.0$,
nunits $=1, \mathrm{nsp}=1$,
$\mathrm{p} 2(1)=55 * 2277 ., \mathrm{p} 2(56)=62 * 487 .$,
$\mathrm{tw}(1)=55 * 543, \mathrm{tw}(56)=62 * 428.0$
$g \circ(1)=55 * 1.82 e 6,62 * 0.0$
jst $=55 * 1,62 * 1$
$\mathrm{qf}(1)=1.0,1.0,1.0,1.0,1.0$
$x(1)=0.0,0.3275,0.6650,0.9925,1.31$
$q f(6)=0.9,0.9995,1.0445,1.062,0.9959,0.85$
$x(6)=0.0,0.435794,0.726312,1.016831,1.201444,1.31$
ProblemTime=
1.5,4.,6.5,36., 88.,
90., 120., 160., 194.5,220.,
250., 280., 299., 302.5, 304.5,
$306.5,309 ., 310 ., 312.5,334.6$,
360., 400., 440., 480., 506.,
549.,580.,592.3,594.3,595.3,
620.,650.,685.,706.8,720.,
750., 783., $806 ., 840 ., 880 .$,
898.,930., $970 ., 1000 ., 1050 .$,
1110.,1150.,1200.,1230., 1260.,
1300.,1340.,1390.,1440.,1469.,
1469.33,1469.73,1471.83,1472.53,1473.83, 1475.93,
1476.73,1476.78,1477.73,1478.60,1478.63,1478.78,
1478.80, 1479.79, 1479.81,1479.83,
1479.93,1480.23,1480.33,1480.73, 1480.75, 1481.70,
1481.73, 1481.75, 1482.70, 1482.73,
1483.63,1483.93, 1484.23,1484.73,1484.75, 1485.70,
1485.73,1485.75, 1486.63, 1487.30,
1487.33,1487.73,1487.75, 1488.90,
1489.00, 1489.03,1489.73, 1490.70,1490.73,1490.80,
1491.70, 1491.73,1491.83,
1492.63,1492.68,1495.23, 1496.73,
1498.33,
1498.4, 1498.5, 1498.6, 1498.7, 1498.8,
1498.9, 1499.0, 1499.1
qmpy =
$1.75,3.65,4.36,4.99,4.93$,
$3.72,4.85,4.85,4.85,4.82$,
$4.82,4.82,4.82,3.81,4.43$,

```
5.02,3.68,4.32,4.98,4.94,
4.82,4.82,4.82,4.82,4.82,
4.37,4.45,3.55,5.37,7.25,
7.22,7.22,7.22,7.22,7.27,
7.27,7.27,7.22,7.32,7.32,
7.02,7.31,7.42,7.35,7.35,
7.35,7.2, 7.2, 7.26,7.26,
6.39,6.35,6.01,6.01,6.01,
4.13,2.42, 6.45, 4.79, 6.26,
6.20, 6.17, 6.72, 6.17, 6.11,
6.75, 6.09, 6.75, 6.75, 6.11,
6.12, 7.82, 6.06, 7.90, 6.08,
7.90, 7.90, 6.03, 7.85, 7.85,
5.98, 7.79, 5.98, 8.73, 5.98,
8.7, 8.7, 5.92, 8.64, 8.64,
5.76, 8.45, 5.87, 8.70, 8.70,
5.87, 8.86, 5.84, 8.8, 5.51,
8.7, 8.7, 5.76, 8.7, 8.70,
5.73, 5.73, 4.94, 5.68,
5.00, 4.50, 4.00, 3.50,3.00,
2.50, 2.00, 1.50
slim = .05,
$end
$frpmox
enrpu39 = 65.86, enrpu40 = 23.43, enrpu41 = 7.38,
enrpu42 = 3.33,
$end
```


A. 15 Halden IFA-636 Rods

IFA-636 (Tverberg et al. 2005) contained both hollow pellets with centerline thermocouples and solid pellets irradiated up to a burnup of $25 \mathrm{GWd} / \mathrm{MTU}$. FRAPCON-3.4 was used to model two of the rods from this assembly. These rods contained 8 percent gadolinia of the type typically used in power reactors. Centerline temperature data from IFA-636 rod 2 (hollow pellets) was used to compare to FRAPCON-3.4 predictions.

Centerline temperature from IFA-636 rod 4 (solid rod) was estimated by Halden based on measurements from IFA-636 rod 2. These estimates were used to compare to FRAPCON-3.4 predictions. These estimates may have more error than those for rod 2 due to both power uncertainties and uncertainties in estimating rod 4 temperature from rod 2 data.

These two rods were used to assess the FRAPCON-3.4 temperature predictions for $\mathrm{UO}_{2}-\mathrm{Gd}_{2} \mathrm{O}_{3}$ fuel as a function of burnup. The input files used for the $\mathrm{UO}_{2}-\mathrm{Gd}_{2} \mathrm{O}_{3}$ temperature assessment as a function of burnup are shown below.

```
IFA-636 Rod 2
* GOESINS:
FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
                CARRIAGE CONTROL='NONE'
*
* GOESOUTS:
FILE06='636-2.out',
        STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='636-2.plot',
                STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'
/****************************************************************************
IFA-636 rod 2
    $frpcn
    im=98, nr=17, ngasr=45, na=9
    $end
    $frpcon
    dco=0.374, thkcld=0.02266, thkgap=0.00305, totl=1.28937, cpl=0.8031
    dspg=0.315, dspgw=0.0394, vs=10
    hplt=0.3858, rc=0.0354, hdish=0.0094, dishsd=0.0639
    enrch=3.95, imox=0, comp=0
    fotmtl=2, gadoln=0.08, ppmh2o=0, ppmn2=0
    den=95.2, deng=0, roughf=0.0000787, rsntr=100, tsint=2911
    icm=4, cldwks=0, roughc=0.0000197, catexf=0.05, chorg=10
    fgpav=145.04, idxgas=1
    iplant=-4, pitch=0.4301, icor=0, crdt=0, crdtr=0, flux=10*50000000000000000
    crephr=10, sgapf=31, slim=0.05, qend=0.3
    jdlpr=1, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
    ProblemTime=
    1, 2.69, 4, 16.94, 19.67
    29.2, 32.58, 61.13, 64.51, 88.29
    90.43, 94.4, 101.85, 116.11, 116.83
    131.05, 131.07, 141.92, 142.76, 146.69
    162.31, 162.36, 163, 199.66, 207.13
    209.29, 213.37, 216.63, 224.76, 233.59
    238.97, 241.03, 257.31, 265.47, 272.95
```

```
277.76, 283.9, 284.61, 307.03, 329.45
351.89, 352.12, 361.61, 366.27, 379.88
402.33, 405.18, 408.46, 447.21, 447.44
449.37, 456.16, 458.13, 467.66, 482.62
513.94, 513.98, 515.97, 524.14, 535.71
537.12, 539.13, 550.69, 551.63, 552.11
559.13, 561, 563.72, 571.11, 579.29
591.55, 599.25, 599.72, 613.3, 618.74
626.16, 636.38, 638.47, 645.88, 647.24
658.13, 658.16, 679.25, 694.89, 697.25
702.48, 705.13, 713.33, 725.61, 731.04
732.99, 739.1, 739.86, 760.27, 767.09
773.36, 775.95, 788.18
qmpy=
0.315, 0.363, 1.04, 0.962, 0.74
0.749, 0.977, 1.23, 1.593, 1.976
0.627, 2.117, 2.575, 2.859, 2.409
3.234,3.053, 3.424, 1.308, 3.294
3.669,3.083, 3.624, 4.606, 4.748
3.128, 3.343, 5.027, 5.485, 5.674
6.58, 6.312, 6.868, 6.876, 6.928
6.302, 6.083, 5.633, 6.15, 6.441
6.598, 3.343, 3.95, 5.396, 5.274
5.295, 3.496, 5.211, 5.473, 2.365
3.899, 4.04, 4.988, 4.997, 5.011
4.681, 4.096, 4.728, 4.691, 4.567
3.938, 4.435, 4.446, 0.888, 3.682
0.76, 3.014, 3.062, 4.24, 4.023
3.9, 0.934, 3.727, 4.101, 4.196
4.969, 4.753, 5.033, 4.08, 5.034
5.044, 4.549, 4.659, 4.674, 0.397
3.285, 4.188, 3.656, 3.262, 3.402
4.575, 4.807, 3.726, 3.746, 3.482
1.506, 3.22, 3.367
nsp=0
p2=493.13, tw= 464, go= 0
iq=0, fa=1
x(1)=
0, 1.28937
qf(1)=
1, 1
jn=2
jst=
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
```

$1,1,1,1,1$
$1,1,1,1,1$
$1,1,1,1,1$
$1,1,1,1,1$
$1,1,1,1,1$
1, 1, 1
\$end

IFA-636 Rod 4

* Goesins:

```
FILEO5='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
```

 CARRIAGE CONTROL='NONE'
 *
* Goesouts:
FILE06='636-4.out',
STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='636-4.plot',
STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'

IFA-636 rod 4
\$frpen
im=98, nr=17, ngasr=45, na=9
\$end
\$frpcon
$\mathrm{dco}=0.374$, thkcld=0.02266, thkgap=0.00305, totl=1.28937, cpl=0.7835
$\mathrm{dspg}=0.315, \mathrm{dspgw}=0.0394, \mathrm{vs}=10$
$h p l t=0.3858$, $r c=0$, hdish=0.0094, dishsd=0.0639
enrch=3.95, imox=0, comp=0
fotmtl=2, gadoln=0.08, ppmh2o=0, ppmn2=0
den $=95.2$, deng=0, roughf $=0.0000787$, rsntr=100, tsint $=2911$
icm=4, cldwks=0, roughc=0.0000197, catexf=0.05, chorg=10
fgpav=145.04, idxgas=1
iplant $=-4$, pitch=0.4301, icor=0, crdt=0, crdtr=0, flux=10*5000000000000000
crephr=10, sgapf=31, slim=0.05, qend=0.3
jdlpr=1, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
ProblemTime=
2.63, 4.75, 5.35, 16.7, 18.15
28.67, 34.25, 65.11, 86.86, 90.59
95.3, 107.91, 114.93, 120.54, 130.33
140.86, 142.51, 142.92, 159.73, 160.52
163.94, 205.97, 207.11, 211.78, 214.1
214.52, 217.92, 219.44, 219.87, 220.71
229.82, 231.04, 234.66, 245.12, 261.23
268.26, 268.5, 272.1, 272.52, 273.91
277.74, 282.38, 283.7, 318.12, 336.34
349.66, 353.61, 355.46, 356.27, 360.61
365.33, 380.82, 404.02, 404.29, 412.45
444.03, 447.3, 458.88, 484.17, 508.11
535.54, 535.71, 541.22, 554.57, 558.04
562.21, 568.24, 572.77, 573.89, 579.05
584.65, 584.81, 597.99, 601.76, 621.42
623.39, 626.2, 629.72, 632.13, 640.98
653.61, 656.8, 662.78, 694.44, 695.94
700.27, 707.19, 708.59, 714.28, 717.85
$722.1,729.13,733.74,738.8,770.45$
770.85, 774.69, 792.98
qmpy=
1.202, 1.785, 1.126, 1.131, 0.822
0.981, 1.294, 1.733, 2.014, 0.621
1.979, 2.294, 2.336, 2.455, 2.769
$2.89,1.263,3.162,3.596,3.015$
$3.636,4.623,1.756,3.386,2.031$
$3.852,4.628,3.854,5.637,4.746$
4.943, 6.184, 5.449, 5.996, 6.43
6.433, 4.844, 6.124, 4.264, 6.241
4.189, 6.594, 6.013, 6.764, 7.121
7.359, 4.532, 1.666, 5.541, 4.69
$6.01,5.9,5.833,4.09,5.914$
$6.277,3.295,5.702,5.829,5.53$
$5.464,4.341,5.079,5.163,0.863$
$5.747,3.076,5.635,2.924,5.948$
$0.487,6.106,1.617,4.524,4.727$
$5.619,5.62,5.583,3.608,5.51$
$5.671,3.192,5.442,5.301,0.11$
$3.986,4.687,4.687,4.302,3.955$
$3.686,3.689,5.706,4.817,4.753$
2.157, 4.561, 4.492
$\mathrm{nsp}=0$
$\mathrm{p} 2=493.13, \mathrm{tw}=464, \mathrm{go}=0$
iq=0, fa=1
$x(1)=$
$0,1.28937$
$\mathrm{qf}(1)=$
1, 1
jn=2
jst=
$1,1,1,1,1$
$1,1,1,1,1$
$1,1,1,1,1$
$1,1,1,1,1$
$1,1,1,1,1$
$1,1,1,1,1$
$1,1,1,1,1$
$1,1,1,1,1$
$1,1,1,1,1$
$1,1,1,1,1$
$1,1,1,1,1$
$1,1,1,1,1$
$1,1,1,1,1$
$1,1,1,1,1$
$1,1,1,1,1$
$1,1,1,1,1$
$1,1,1,1,1$
$1,1,1,1,1$
$1,1,1,1,1$
$1,1,1$
\$end

A. 16 BR-3 Rods

The DOE sponsored high-burnup irradiation of five well-characterized PWR-type test rods (Balfour 1982; Balfour et al. 1982) in the BR-3 reactor, located in Mol, Belgium, to demonstrate the feasibility of extending commercial fuel rod burnup and thereby help to minimize radioactive waste disposal. These rods were fabricated by Westinghouse Corporation, whose staff also oversaw the PIEs. The PIE on the rods was carried out in the BR-2 hot cell facility at the Mol site. The rods were of basic PWR radial dimensions. Goal peak burnups exceeded $70 \mathrm{GWd} / \mathrm{MTU}$.

The test rods were designed to simulate Westinghouse PWR (15×15) rod cladding type and radial dimensions, with variations in fuel enrichment and rod position providing variations in power history. The fuel rod length was much shorter than the full-length (~ 144-inch) commercial reactor rods and fit well within the short length of the BR-3 reactor core. The fuel rod overall length was 44 inches with an active fuel column length of 38.4 inches.

Six rods were selected for comparison with FRAPCON-3.4 FGR predictions: 24-I-6, 36-I-8, 111-I-5, 28-I-6, 30-I-8, and 332. Three of these rods were also selected for comparison with FRAPCON-3.4 void volume predictions: 24-I-6, 36-I-8, and 111-I-5. The input files used for the FGR and void volume assessments are shown below.

24-I-6 FGR Case

* GOESINS:

FILE05='nullfile', STATUS='scratch', FORM='FORMATTED', CARRIAGE CONTROL='LIST'
*

* GOESOUTS:

FILE06='out24I6.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='24i6.plot', STATUS='UNKNOWN', FORM='FORMATTED', CARRIAGE CONTROL='LIST'

Westinghouse BR-3 Rod 2416
\$frpen
im=54, na=9, nr=17,
ngasr $=45$,
\$end
\$frpcon
nplot=1
$\mathrm{cpl}=4.0145, \mathrm{crdt}=1 ., \operatorname{crdtr}=0.0$, thkcld=0.0243,
$\mathrm{dco}=0.4220$, pitch $=0.505$, crephr=10.0,
den $=94.77$, dishsd $=0.0504$, thkgap=0.00375, dspg $=0.370$,
dspgw $=0.055$, enrch $=6.42$, fgpav $=200.01$, hdish $=0.0135$,
hplt $=0.60$, icm $=4$, siggro=0.0
icor $=0$, idxgas $=1, i p l a n t=-2, i q=0, j d l p r=0, f a=1.0$,
jn $=15,15,15,15,15,15,15,15$
totl $=3.2$, roughc $=1.97 \mathrm{e}-5$, roughf $=2.36 \mathrm{e}-5, \mathrm{vs}=8.0$,
nunits $=1$, rsntr $=101.9$,
flux (1) = 10*0.21e17, p2(1) = 2199.0, $\operatorname{tw}(1)=491, ~ g o(1)=2.1 \mathrm{e} 6$,
jst $=11 * 1,13 * 2,8 * 3,2 * 4,4 * 5,5 * 6,5 * 7,6 * 8$
$q f(1)=0.4556,0.6702,0.8718,1.0298,1.1801,1.2690,1.3377,1.3600,1.3300$,
$1.2824,1.1686,1.0454,0.8680,0.6706,0.4610$,
$x(1)=0.000,0.229,0.457,0.686,0.914,1.143,1.371,1.600$,
$1.829,2.057,2.286,2.514,2.743,2.971,3.200$,

```
qf(16) =0.5272,0.7170,0.8939,1.0269,1.1530,1.2297,1.2901,1.3100,1.2842,
1.2431,1.1450,1.0389,0.8873,0.7191,0.5347,
x(16) = 0.000,0.229,0.457,0.686,0.914,1.143,1.371,1.600,
1.829,2.057,2.286,2.514,2.743,2.971,3.200,
qf(31) = 0.6247,0.7759,0.9171,1.0248,1.1267,1.1836,1.2256,1.2400,1.2232,
1.1933,1.1140,1.0282,0.9100,0.7798,0.6330,
x(31) = 0.000,0.229,0.457,0.686,0.914,1.143,1.371,1.600,
1.829,2.057,2.286,2.514,2.743,2.971,3.200,
qf(46) =0.5552,0.6963,0.8647,1.0320,1.1433,1.2192,1.2215,1.2356,1.2700,
1.2552,1.2022,1.1037,0.9255,0.7322,0.5434,
x(46) = 0.000,0.229,0.457,0.686,0.914,1.143,1.371,1.600,
1.829,2.057,2.286,2.514,2.743,2.971,3.200,
qf(61) = 0.5596,0.7407,0.9187,1.0442,1.1286,1.1877,1.1823,1.1865,1.2100,
1.2070,1.1482,1.0821,0.9825,0.8038,0.6182,
x(61) = 0.000,0.229,0.457,0.686,0.914,1.143,1.371,1.600,
1.829,2.057,2.286,2.514,2.743,2.971,3.200,
qf(76) = 0.8368,0.9372,1.0473,1.0767,1.0800,1.0658,1.0271,1.0104,1.0124,
1.0248,1.0420,1.0589,1.0367,0.9407,0.8033,
x(76) = 0.000,0.229,0.457,0.686,0.914,1.143,1.371,1.600,
1.829,2.057,2.286,2.514,2.743,2.971,3.200,
qf(91) = 0.5780,0.6795,0.8387,1.0024,1.1306,1.2171,1.2608,1.2616,1.2700,
1.2418,1.1714,1.0831,0.9543,0.7516,0.5589,
x(91) = 0.000,0.229,0.457,0.686,0.914,1.143,1.371,1.600,
1.829,2.057,2.286,2.514,2.743,2.971,3.200,
qf(106) = 0.7999,0.8922,1.0090,1.0770,1.1000,1.0710,1.0406,1.0359,1.0462,
1.0615,1.0863,1.0914,1.0176,0.9149,0.7565,
x(106) = 0.000,0.229,0.457,0.686,0.914,1.143,1.371,1.600,
1.829,2.057,2.286,2.514,2.743,2.971,3.200,
ProblemTime=
0.1, 0.5, 1.0, 1.5, 6.25,
13.33, 21.25, 52.25, 53.50, 69.50,
81.25, 83.96, 87.71, 90.21, 96.21,
97.00, 123.13, 124.00, 129.13, 135.63,
137.0, 147.63, 149.00, 166.67, 182.04,
183.0, 224.54, 226.00, 254.17, 255.00,
257.71,276.13, 280.29, 286.13, 310.92,
338.63,380.29, 442.79, 484.46, 526.13,
609.46,692.79, 776.13, 779.88, 830.42,
849.04,878.21, 932.38, 996.96, 999.96,
1029.04, 1036.54, 1038.63, 1136.96,
qmpy =
2, 4, 6, 9.316, 10.915,
11.473, 12.167, 10.846, 11.542,9.940,
11.472, 9.734, 11.472, 10.429, 9.426,
8.343, 7.095, 5.480, 7.300, 7.300,
8.621, 8.621, 9.038, 9.038, 9.038,
9.734, 9.734, 9.456, 9.456, 9.038,
9.038, 9.038, 12.245, 13.324,12.468,
12.468, 12.309, 12.055, 11.769,11.515,
10.945, 10.437, 9.929, 6.760, 8.047,
5.048, 8.013, 7.812, 7.297, 4.947,
7.644, 8.013, 4.947, 7.879,
slim = .05,
$end
```


36-I-8 FGR Case

* GOESINS:

FILE05='nullfile', STATUS='scratch', FORM='FORMATTED', CARRIAGE CONTROL='LIST'
*

* GOESOUTS:

FILE06='out36I8.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='36i8.plot', STATUS='UNKNOWN', FORM='FORMATTED', CARRIAGE CONTROL='LIST'
Westinghouse BR-3 Rod 36I8
\$frpcn
$i m=43, \mathrm{na}=6, \mathrm{nr}=20$,
ngasr $=45$,
\$end
\$frpcon
nplot=1
cpl $=4.0145$, crdt $=1 .$, thkcld $=0.0244$,
$\mathrm{dco}=0.4220$, pitch $=0.56$
den $=94.774$, dishsd $=0.0504$, thkgap=0.00375, dspg $=0.370$,
dspgw $=0.055$, enrch $=8.53$, fgpav $=214.4$, hdish $=0.0135$,
hplt $=0.60$, icm $=4$,
icor $=0$, idxgas $=1$, iplant $=-2$, iq $=0$, jdlpr $=0, f a=1.0$,
$j n=11,11,11,11,11,11$,
totl $=3.2$, roughc $=1.97 e-5$, roughf $=2.36 e-5, \mathrm{vs}=8.0$,
nunits $=1$, rsntr $=101.9$,
flux $=7 * 0.21 e 17, \mathrm{p} 2(1)=2199.0, \mathrm{tw}(1)=491, \mathrm{go}(1)=1.7 e 6$,
jist $=10 * 1,3 * 2,6 * 3,4 * 4,7 * 5,5 * 6,8 * 5$,
qf (1) $=0.34,0.67,0.96,1.18,1.31,1.36,1.31,1.19,0.98,0.70,0.35$,
$x(1)=0.00,0.32,0.64,0.96,1.28,1.60,1.92,2.24,2.56,2.88,3.20$,
$q f(12)=0.43,0.72,0.97,1.15,1.26,1.31,1.27,1.16,0.98,0.75,0.45$,
$x(12)=0.00,0.32,0.64,0.96,1.28,1.60,1.92,2.24,2.56,2.88,3.20$,
$q f(23)=0.46,0.70,0.95,1.14,1.22,1.23,1.27,1.21,1.03,0.75,0.45$,
$x(23)=0.00,0.32,0.64,0.96,1.28,1.60,1.92,2.24,2.56,2.88,3.20$,
qf $(34)=0.45,0.75,0.98,1.13,1.19,1.19,1.21,1.16,1.05,0.85,0.50$,
$x(34)=0.00,0.32,0.64,0.96,1.28,1.60,1.92,2.24,2.56,2.88,3.20$,
qf (45) $=0.78,0.94,1.07,1.08,1.05,1.01,1.02,1.04,1.06,0.96,0.72$,
$x(45)=0.00,0.32,0.64,0.96,1.28,1.60,1.92,2.24,2.56,2.88,3.20$,
$q f(56)=0.51,0.68,0.92,1.13,1.24,1.26,1.27,1.18,1.04,0.80,0.45$,
$x(56)=0.00,0.32,0.64,0.96,1.28,1.60,1.92,2.24,2.56,2.88,3.20$,
ProblemTime=
$0.1,0.2,0.3,0.4,0.5$,
0.6, 1., 25., 52., 88.,
96., 136., 148., 180., 224.,
254., 274., 280., 286., 310.,
350., 400., 450., 500., 526.,
565., 609., 650., 700., 750.,
800., 830., 882., 900., 932.,
950., 997., 1029., 1037., 1062.,
1087., 1112., 1137.
qmpy $=$
1., 2., 3., 4., 5.,
6., 7.45, 7.45, 7.45, 7.00,
$6.60,4.9,5.7,6.0,6.5$,
$6.3,2.7,11.7,12.5,11.8$,
5*12.6,
12.2, 12.2, 11.8, 11.8, 11.4,

```
9.4, 9.4, 9.7, 9.7, 9.7,
9.5, 9.3, 9.8, 10.3, 10.2,
10.2, 10.2, 10.2
slim = .05,
$end
```


111-I-5 FGR Case

* GOESINS:

FILE05='nullfile', STATUS='scratch', FORM='FORMATTED', CARRIAGE CONTROL='LIST'
*

* GOESOUTS:

FILE06='out111I5.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='111i5.plot', STATUS='UNKNOWN', FORM='FORMATTED', CARRIAGE CONTROL='LIST'
 Westinghouse BR-3 Rod 111I5
\$frpen
im=36, na=6, nr=15, ngasr $=45$,
send
\$frpcon
nplot=1
cpl $=4.0145, \operatorname{crdt}=1 ., \operatorname{crdtr}=0.0$, thkcld=0.0244,
dco $=0.4220$, pitch $=0.56$,
den $=94.77$, dishsd $=0.0504$, thkgap=0.00375, dspg $=0.358$,
dspgw $=0.055$, enrch $=5.2$, fgpav $=214.4$, hdish $=0.014$,
hplt $=0.60$, $i c m=4$,
icor $=0$, idxgas $=1$, iplant $=-2, i q=0, j d l p r=0, f a=1.0$, $j n=15,15,15,15,15,15$,
totl $=3.2$, roughc $=1.97 e-5$, roughf $=2.36 e-5, \mathrm{vs}=8.0$,
nunits $=1$, rsntr $=101.9$,
flux $=7 * 0.21 \mathrm{e} 17, \mathrm{p} 2(1)=2199.0$, $\mathrm{tw}(1)=491, \mathrm{go}(1)=1.9 \mathrm{e} 6$, jst $=12 * 1,4 * 2,5 * 3,2 * 4,7 * 5,6 * 6$,
$q f(1)=0.7664,0.8658,0.9845,1.1023,1.1807,1.2342,1.2358,1.2457,1.2700$, $1.2596,0.5681,0.9040,0.8493,0.9745,0.7389$,
$x(1)=0.000,0.229,0.457,0.686,0.914,1.143,1.371,1.600$,
$1.829,2.057,2.286,2.514,2.743,2.971,3.200$,
$\mathrm{qf}(16)=0.5596,0.7407,0.9187,1.0442,1.1286,1.1877,1.1823,1.1865,1.2100$, $1.2070,1.1482,1.0821,0.9825,0.8038,0.6182$,
$x(16)=0.000,0.229,0.457,0.686,0.914,1.143,1.371,1.600$,
$1.829,2.057,2.286,2.514,2.743,2.971,3.200$,
qf (31) $=0.8369,0.9372,1.0473,1.0767,1.0800,1.0658,1.0271,1.0104,1.0124$, $1.0248,1.0420,1.0589,1.0366,0.9407,0.8033$,
$x(31)=0.000,0.229,0.457,0.686,0.914,1.143,1.371,1.600$,
$1.829,2.057,2.286,2.514,2.743,2.971,3.200$,
qf (46) $=0.6462,0.7377,0.8727,1.0046,1.1217,1.2000,1.2275,1.2397,1.2500$, $1.2296,1.1543,1.0474,0.8998,0.7382,0.6305$,
$x(46)=0.000,0.229,0.457,0.686,0.914,1.143,1.371,1.600$, $1.829,2.057,2.286,2.514,2.743,2.971,3.200$,
$q f(61)=0.6369,0.7298,0.8754,1.0251,1.1425,1.2217,1.2616,1.2623,1.2700$, $1.2442,1.1797,1.0990,0.9812,0.7957,0.2748$,
$x(61)=0.000,0.229,0.457,0.686,0.914,1.143,1.371,1.600$,
$1.829,2.057,2.286,2.514,2.743,2.971,3.200$,
$\mathrm{qf}(76)=0.7999,0.8922,1.0090,1.0770,1.1000,1.0710,1.0406,1.0359,1.0462$, $1.0615,1.0863,1.0914,1.0176,0.9149,0.7565$,

```
x(76) =0.000,0.229,0.457,0.686,0.914,1.143,1.371,1.600,
1.829,2.057,2.286,2.514,2.743,2.971,3.200,
ProblemTime=
0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 1.0,
4.2, 10.0, 35.2, 62.5, 104.2,
166.7, 208.3, 250.0, 333.3, 416.6,
500.0, 500.2, 500.4, 500.6, 502., 503.8, 554.3, 572.9,
602.1, 656.3, 720.8, 723.8, 752.9,
760.4, 762.5, 860.8
qmpy =
1., 2., 3., 4., 5.0,
6., 7., 8., 9., 10.0,
13.138, 13.935, 12.724, 12.914, 12.914,
12.914, 12.724, 12.372, 11.703, 11.097,
10.491, 9., 7.5, 5., 4.232, 6.676, 8.131, 5.143,
8.231, 8.131, 7.720, 5.243, 8.053,
8.398, 5.143, 8.331
slim = 0.05,
$end
```


28-I-6 FGR Case

* GOESINS:
FILE05='nullfile', STATUS='scratch', FORM='FORMATTED',
CARRIAGE CONTROL='LIST'
\star
* GOESOUTS:
FILE06='out28I6.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='28i6.plot', STATUS='UNKNOWN', FORM='FORMATTED',
CARRIAGE CONTROL='LIST'

Westinghouse BR-3 Rod 2816
\$frpen
im=55, na=9, nr=17,
ngasr $=45$,
\$end
\$frpcon
nplot=1
cpl $=4.0145$, crdt $=1 ., \quad$ crdtr $=0.0, ~ t h k c l d=0.0243$,
dco $=0.4220$, pitch $=0.56$,
den $=94.70$, dishsd $=0.0504$, thkgap=0.00375, dspg $=0.370$,
dspgw $=0.055$, enrch $=6.42$, fgpav $=200.0$, hdish $=0.0135$,
hplt $=0.60$, icm $=4$,
icor $=0$, idxgas $=1$, iplant $=-2, i q=0, j d l p r=1, f a=1.0$,
$j n=15,15,15,15,15,15,15,15$
totl $=3.2$, roughc $=1.97 e-5$, roughf $=2.36 e-5, \mathrm{vs}=8.0$,
nunits $=1$, rsntr $=101.9$,
flux (1) $=10 * 0.21 e 17, \mathrm{p} 2(1)=2199.0, \operatorname{tw}(1)=491, \mathrm{go}(1)=2.1 \mathrm{e} 6$,
jst $=11 * 1,9 * 2,6 * 3,2 * 4,4 * 5,5 * 6,6 * 7,12 * 8$
qf(1) $=0.4556,0.6702,0.8718,1.0298,1.1801,1.2690,1.3377,1.3600,1.3300$,
$1.2824,1.1686,1.0454,0.8680,0.6706,0.4610$,
$x(1)=0.000,0.229,0.457,0.686,0.914,1.143,1.371,1.600$,
$1.829,2.057,2.286,2.514,2.743,2.971,3.200$,
$\mathrm{qf}(16)=0.5272,0.7170,0.8939,1.0269,1.1530,1.2297,1.2901,1.3100,1.2842$,
$1.2431,1.1450,1.0389,0.8873,0.7191,0.5347$,
$x(16)=0.000,0.229,0.457,0.686,0.914,1.143,1.371,1.600$,

```
1.829,2.057,2.286,2.514,2.743,2.971,3.200,
qf(31) = 0.6247,0.7759,0.9171,1.0248,1.1267,1.1836,1.2256,1.2400,1.2232,
1.1933,1.1140,1.0282,0.9100,0.7798,0.6330,
x(31) = 0.000,0.229,0.457,0.686,0.914,1.143,1.371,1.600,
1.829,2.057,2.286,2.514,2.743,2.971,3.200,
qf(46) =0.5552,0.6963,0.8647,1.0320,1.1433,1.2192,1.2215,1.2356,1.2700,
1.2552,1.2022,1.1037,0.9255,0.7322,0.5434,
x(46) = 0.000,0.229,0.457,0.686,0.914,1.143,1.371,1.600,
1.829,2.057,2.286,2.514,2.743,2.971,3.200,
qf(61) = 0.5596,0.7407,0.9187,1.0442,1.1286,1.1877,1.1823,1.1865,1.2100,
1.2070,1.1482,1.0821,0.9825,0.8038,0.6182,
x(61) = 0.000,0.229,0.457,0.686,0.914,1.143,1.371,1.600,
1.829,2.057,2.286,2.514,2.743,2.971,3.200,
qf(76) = 0.8368,0.9372,1.0473,1.0767,1.0800,1.0658,1.0271,1.0104,1.0124,
1.0248,1.0420,1.0589,1.0367,0.9407,0.8033,
x(76) = 0.000,0.229,0.457,0.686,0.914,1.143,1.371,1.600,
1.829,2.057,2.286,2.514,2.743,2.971,3.200,
qf(91) = 0.5780,0.6795,0.8387,1.0024,1.1306,1.2171,1.2608,1.2616,1.2700,
1.2418,1.1714,1.0831,0.9543,0.7516,0.5589,
x(91) = 0.000,0.229,0.457,0.686,0.914,1.143,1.371,1.600,
1.829,2.057,2.286,2.514,2.743,2.971,3.200,
qf(106) = 0.7999,0.8922,1.0090,1.0770,1.1000,1.0710,1.0406,1.0359,1.0462,
1.0615,1.0863,1.0914,1.0176,0.9149,0.7565,
x(106) = 0.000,0.229,0.457,0.686,0.914,1.143,1.371,1.600,
1.829,2.057,2.286,2.514,2.743,2.971,3.200,
ProblemTime=
0.1, 0.2, 0.3, 0.4, 6.3,
13.3, 21.3, 52.3, 53.5, 69.5,
81.3, 84.0, 87.7, 90.2, 96.2,
123.1, 129.1, 135.6, 147.6, 166.7,
182.0, 224.5, 254.2, 257.7, 258.7,
274.2, 280.3, 286.1, 311.3, 338.6,
380.3, 442.8, 484.5, 526.1, 609.5,
692.8, 776.1, 777.4, 779.9, 830.4,
849.0, 855.0, 863.0, 870.0, 878.2,
932.4, 997.0, 1000.0, 1029.0, 1031.,
1032., 1034. ,1036.5, 1038.6, 1137.0,
qmpy =
    2., 4., 6., 7.78, 9.11,
    9.59, 10.46, 9.06, 9.64, 8.13,
    9.58, 8.13, 8.58, 8.71, 7.83,
    5.90, 6.10, 6.10, 7.20, 7.55,
    7.55, 8.03, 7.98, 7.55, 5.80,
    2.54, 9.90, 10.75, 10.09, 10.21,
    10.24, 10.21, 10.12, 9.99, 9.64,
    9.33, 8.98, 3.99, 6.41, 7.61,
    4.84, 5.0, 6.00, 7.00, 7.71,
    7.57, 7.19, 4.91, 5.0, 6.0,
    7.0, 7.61, 8.04, 7.84, 7.91
slim = .05,
$end
```


30-I-8 FGR Case

* GOESINS:

FILE05='nullfile', STATUS='scratch', FORM='FORMATTED',
CARRIAGE CONTROL='LIST'

```
*
```

* GOESOUTS:
FILE06='out30I8.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='30i8.plot', STATUS='UNKNOWN', FORM='FORMATTED',
CARRIAGE CONTROL='LIST'

Westinghouse BR-3 Rod 3018
\$frpen
im=73, na=16, nr=20,
ngasr = 45,
\$end
\$frpcon
nplot=1
dco $=0.4220$, thkcld $=0.0243$, thkgap $=0.00375$,
totl $=3.2, \mathrm{cpl}=4.0145$,
$\mathrm{dspg}=0.370, \mathrm{dspgw}=0.055, \mathrm{vs}=8.0$,
hplt $=0.60$, hdish $=0.0135$, dishsd $=0.0504$,
enrch $=8.53$,
den $=94.774$, roughf $=2.36 e-5$,
rsntr $=101.9$,
icm $=4$, roughc $=1.97 e-5$,
fgpav $=200.0$, idxgas $=1$,
iplant $=-2, n s p=1$,
$\mathrm{p} 2(1)=37 * 2000.0,20.0,18 * 2000.0,20.0,15 * 2000.0,15.0$
$\operatorname{tw}(1)=37 * 491.0,60.0,18 * 491.0,60.0,15 * 491.0,100.0$,
go(1) $=73 * 1.608 \mathrm{e} 6$, flux $(1)=17 * 0.21 \mathrm{e} 17$, pitch $=0.56$
icor $=0$, crdt $=1 .$,
jdlpr $=0$, nunits $=1$,
iq $=0, \mathrm{fa}=1.0$,
jn $=17,17,17,17,17,17,17,17,17$,
jst $=14 * 1,9 * 2,15 * 3,9 * 4,4 * 5,6 * 6,5 * 7,4 * 8,7 * 9$,
$q f(1)=0.3483,0.4556,0.6702,0.8718,1.0298,1.1801,1.2690$,
$1.3377,1.3600,1.3300,1.2824,1.1686,1.0454,0.8680,0.6706$,
$0.4610,0.3562$,
$x(1)=0.000,0.107,0.320,0.533,0.747,0.960,1.173,1.387,1.600,1.813$
$2.027,2.240,2.453,2.667,2.880,3.093,3.200$,
$q f(18)=0.4323,0.5272,0.7170,0.8939,1.0269,1.1530,1.2297$,
$1.2901,1.3100,1.2842,1.2431,1.1450,1.0389,0.8873,0.7191$,
$0.5347,0.4425$,
$x(18)=0.000,0.107,0.320,0.533,0.747,0.960,1.173,1.387,1.600,1.813$
$2.027,2.240,2.453,2.667,2.880,3.093,3.200$,
$q f(35)=0.5364,0.6141,0.7695,0.9148,1.0255,1.1303,1.1888$,
$1.2320,1.2468,1.2295,1.1988,1.1173,1.0290,0.9074,0.7736$,
0.6227,0.5473,
$x(35)=0.000,0.107,0.320,0.533,0.747,0.960,1.173,1.387,1.600,1.813$
$2.027,2.240,2.453,2.667,2.880,3.093,3.200$,
$\mathrm{qf}(52)=0.4847,0.5552,0.6963,0.8647,1.0320,1.1433,1.2192$,
$1.2215,1.2356,1.2700,1.2552,1.2022,1.1037,0.9255,0.7322$,
$0.5434,0.4490$,
$x(52)=0.000,0.107,0.320,0.533,0.747,0.960,1.173,1.387,1.600,1.813$
$2.027,2.240,2.453,2.667,2.880,3.093,3.200$,
$\mathrm{qf}(69)=0.4691,0.5596,0.7407,0.9187,1.0442,1.1286,1.1877$,
$1.1823,1.1865,1.2100,1.2070,1.1482,1.0821,0.9825,0.8038$,
$0.6182,0.5254$,
$x(69)=0.000,0.107,0.320,0.533,0.747,0.960,1.173,1.387,1.600,1.813$
$2.027,2.240,2.453,2.667,2.880,3.093,3.200$,
$\mathrm{qf}(86)=0.7987,0.8460,0.9407,1.0446,1.0724,1.0756,1.0621$,
$1.0256,1.0098,1.0117,1.0234,1.0397,1.0556,1.0346,0.9440$, $0.8142,0.7493$,
$x(86)=0.000,0.107,0.320,0.533,0.747,0.960,1.173,1.387,1.600,1.813$
$2.027,2.240,2.453,2.667,2.880,3.093,3.200$,
$q f(103)=0.6005,0.6462,0.7377,0.8727,1.0046,1.1217,1.2000$, $1.2275,1.2397,1.2500,1.2296,1.1543,1.0474,0.8998,0.7382$, 0.6305,0.5767,
$x(103)=0.000,0.107,0.320,0.533,0.747,0.960,1.173,1.387,1.600,1.813$
$2.027,2.240,2.453,2.667,2.880,3.093,3.200$,
$q f(120)=0.5273,0.5780,0.6795,0.8387,1.0024,1.1306,1.2172$,
$1.2608,1.2616,1.2700,1.2418,1.1714,1.0831,0.9543,0.7516$, 0.5589,0.4626,
$x(120)=0.000,0.107,0.320,0.533,0.747,0.960,1.173,1.387,1.600,1.813$
$2.027,2.240,2.453,2.667,2.880,3.093,3.200$,
$\mathrm{qf}(137)=0.7538,0.7999,0.8922,1.0090,1.0770,1.1000,1.0710$,
$1.0406,1.0359,1.0462,1.0615,1.0863,1.0914,1.0176,0.9149$, $0.7565,0.6773$,
$x(137)=0.000,0.107,0.320,0.533,0.747,0.960,1.173,1.387,1.600,1.813$
$2.027,2.240,2.453,2.667,2.880,3.093,3.200$,
ProblemTime=
$0.1000,0.2000,0.3000,0.4000,0.5000$,
$0.6000,0.7000,6.2500,13.3333,21.2500$,
$52.2500,53.5000,69.5000,81.2500,83.9583$,
87.7083,90.2083,96.2083,96.2088,123.1250,
123.1254,135.6250,147.6250,182.0417,224.5417, 254.1667,257.7083,257.7088,258.7083,258.7088,
258.7092,274.2083,274.2088,274.2092,274.2096,
$274.2100,274.2104,276.1250,276.2000,276.3000$,
276.4000,276.5000,276.6000,276.7000,276.8000,
$280.2917,286.1250,310.9167,338.6250,380.2917$,
$442.7917,484.4583,526.1250,609.4583,692.7917$,
$776.1250,776.1254,777.3750,777.4000,777.5000$,
$777.6000,779.8750,830.4167,849.0417,878.2083$,
932.3750,996.9583,999.9583,1029.0417,1036.5417, 1038.6250,1136.9583,1136.9588,
qmpy =
$1.000,2.000,3.000,4.000,5.000$,
$6.000,6.975,8.173,8.589,9.109$,
8.120,8.641,7.287,8.589,7.287,
8.589,7.808,7.062,6.247,5.321,
$4.373,5.466,6.501,6.767,7.287$,
$7.079,6.767,5.998,5.206,4.353$,
3.386,2.299,2.419,1.935,1.451,
$0.967,0.484,0.010,1.000,2.500$,
$4.000,5.500,7.000,8.500,10.000$,
10.711,11.590,11.024,11.276,11.496,
11.748,11.748,11.685,11.433,11.119,
$10.837,0.010,1.745,3.000,4.500$,
$6.000,7.610,9.076,5.797,9.277$,
$9.244,8.908,6.110,9.378,9.859$,
6.032, 9.792,0.011,
slim = .05,
\$end

24-I-6 Void Volume Case

* GOESINS:

FILE05='nullfile', STATUS='scratch', FORM='FORMATTED',

```
CARRIAGE CONTROL='LIST'
```

\star

* GOESOUTS:
$\begin{aligned} & \text { FILE06='out24I6.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST' } \\ & \text { FILE66= } \text { '24i6.plot', STATUS='UNKNOWN', FORM='FORMATTED', } \\ & \text { CARRIAGE CONTROL='LIST' }\end{aligned}$
Westinghouse BR-3 Rod 2416
\$frpen
im=55, na=9, nr=17,
ngasr $=45$,
\$end
\$frpcon
nplot=1
$\mathrm{cpl}=4.0145, \mathrm{crdt}=1 ., \operatorname{crdtr}=0.0$, thkcld=0.0243,
dco $=0.4220$, pitch $=0.505$, crephr=10.0,
den $=94.77$, dishsd $=0.0504$, thkgap=0.00375, dspg $=0.370$,
dspgw $=0.055$, enrch $=6.42$, fgpav $=200.01$, hdish $=0.0135$,
hplt $=0.60$, $i \mathrm{~cm}=4$,
icor $=0$, idxgas $=1$, iplant $=-2$, iq $=0, j d l p r=0, f a=1.0$,
jn $=15,15,15,15,15,15,15,15$
totl $=3.2$, roughc $=1.97 e-5$, roughf $=2.36 e-5, \mathrm{vs}=8.0$,
nunits $=1$, rsntr $=101.9, \mathrm{nsp}=1$,
flux (1) $=10 * 0.21 \mathrm{e} 17, \mathrm{p} 2(1)=54 * 2199.0,14.7$
$\operatorname{tw}(1)=54 * 491,77.0 \mathrm{go}(1)=54 * 2.1 \mathrm{e} 6,0.0$
jst $=11 * 1,13 * 2,8 * 3,2 * 4,4 * 5,5 * 6,5 * 7,6 * 8,8$
$q f(1)=0.4556,0.6702,0.8718,1.0298,1.1801,1.2690,1.3377,1.3600,1.3300$,
$1.2824,1.1686,1.0454,0.8680,0.6706,0.4610$,
$x(1)=0.000,0.229,0.457,0.686,0.914,1.143,1.371,1.600$,
$1.829,2.057,2.286,2.514,2.743,2.971,3.200$,
$q f(16)=0.5272,0.7170,0.8939,1.0269,1.1530,1.2297,1.2901,1.3100,1.2842$,
$1.2431,1.1450,1.0389,0.8873,0.7191,0.5347$,
$x(16)=0.000,0.229,0.457,0.686,0.914,1.143,1.371,1.600$,
$1.829,2.057,2.286,2.514,2.743,2.971,3.200$,
$q f(31)=0.6247,0.7759,0.9171,1.0248,1.1267,1.1836,1.2256,1.2400,1.2232$,
$1.1933,1.1140,1.0282,0.9100,0.7798,0.6330$,
$x(31)=0.000,0.229,0.457,0.686,0.914,1.143,1.371,1.600$,
$1.829,2.057,2.286,2.514,2.743,2.971,3.200$,
$\mathrm{qf}(46)=0.5552,0.6963,0.8647,1.0320,1.1433,1.2192,1.2215,1.2356,1.2700$,
$1.2552,1.2022,1.1037,0.9255,0.7322,0.5434$,
$x(46)=0.000,0.229,0.457,0.686,0.914,1.143,1.371,1.600$,
$1.829,2.057,2.286,2.514,2.743,2.971,3.200$,
$q f(61)=0.5596,0.7407,0.9187,1.0442,1.1286,1.1877,1.1823,1.1865,1.2100$,
$1.2070,1.1482,1.0821,0.9825,0.8038,0.6182$,
$x(61)=0.000,0.229,0.457,0.686,0.914,1.143,1.371,1.600$,
$1.829,2.057,2.286,2.514,2.743,2.971,3.200$,
$q f(76)=0.8368,0.9372,1.0473,1.0767,1.0800,1.0658,1.0271,1.0104,1.0124$,
$1.0248,1.0420,1.0589,1.0367,0.9407,0.8033$,
$x(76)=0.000,0.229,0.457,0.686,0.914,1.143,1.371,1.600$,
$1.829,2.057,2.286,2.514,2.743,2.971,3.200$,
$q f(91)=0.5780,0.6795,0.8387,1.0024,1.1306,1.2171,1.2608,1.2616,1.2700$,
$1.2418,1.1714,1.0831,0.9543,0.7516,0.5589$,
$x(91)=0.000,0.229,0.457,0.686,0.914,1.143,1.371,1.600$,
$1.829,2.057,2.286,2.514,2.743,2.971,3.200$,
$q f(106)=0.7999,0.8922,1.0090,1.0770,1.1000,1.0710,1.0406,1.0359,1.0462$,
$1.0615,1.0863,1.0914,1.0176,0.9149,0.7565$,
$x(106)=0.000,0.229,0.457,0.686,0.914,1.143,1.371,1.600$,

```
1.829,2.057,2.286,2.514,2.743,2.971,3.200,
ProblemTime=
0.1, 0.5, 1.0, 1.5, 6.25,
13.33, 21.25, 52.25, 53.50, 69.50,
81.25, 83.96, 87.71, 90.21, 96.21,
97.00, 123.13, 124.00, 129.13, 135.63,
137.0, 147.63, 149.00, 166.67, 182.04,
183.0, 224.54, 226.00, 254.17, 255.00,
257.71,276.13, 280.29, 286.13, 310.92,
338.63,380.29, 442.79, 484.46, 526.13,
609.46,692.79, 776.13, 779.88, 830.42,
849.04,878.21, 932.38, 996.96, 999.96,
1029.04, 1036.54, 1038.63, 1136.96,1137.96
qmpy =
2, 4, 6, 9.316, 10.915,
11.473, 12.167, 10.846, 11.542,9.940,
11.472, 9.734, 11.472, 10.429, 9.426,
8.343, 7.095, 5.480, 7.300, 7.300,
8.621, 8.621, 9.038, 9.038, 9.038,
9.734, 9.734, 9.456, 9.456, 9.038,
9.038, 9.038, 12.245, 13.324,12.468,
12.468, 12.309, 12.055, 11.769,11.515,
10.945, 10.437, 9.929, 6.760, 8.047,
5.048, 8.013, 7.812, 7.297, 4.947,
7.644, 8.013, 4.947, 7.879,0.0
slim = .05,
$end
```


36-I-8 Void Volume Case

* GOESINS:

```
FILE05='nullfile', STATUS='scratch', FORM='FORMATTED',
    CARRIAGE CONTROL='LIST'
*
* GOESOUTS:
FILE06='out36I8.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='36i8.plot', STATUS='UNKNOWN', FORM='FORMATTED',
    CARRIAGE CONTROL='LIST'
/*************************************************************************
```

 Westinghouse BR-3 Rod 36I8
 \$frpen
im=44, na=6, nr=20,
ngasr $=45$,
\$end
\$frpcon
nplot=1
$\mathrm{cpl}=4.0145, \mathrm{crdt}=1 .$, thkcld $=0.0244$,
$\mathrm{dco}=0.4220$, pitch $=0.56$
den $=94.774$, dishsd $=0.0504$, thkgap=0.00375, dspg $=0.370$,
dspgw $=0.055$, enrch $=8.53$, fgpav $=214.4$, hdish $=0.0135$,
hplt $=0.60$, icm $=4$,
icor $=0$, idxgas $=1, i p l a n t=-2, i q=0, j d l p r=0, f a=1.0$,
$j n=11,11,11,11,11,11$,
totl $=3.2$, roughc $=1.97 \mathrm{e}-5$, roughf $=2.36 \mathrm{e}-5, \mathrm{vs}=8.0$,
nunits $=1$, rsntr $=101.9, n s p=1$
flux $=7 * 0.21 \mathrm{e} 17, \mathrm{p} 2(1)=43 * 2199.0,14.7$,
$\mathrm{tw}(1)=43 * 491,77.0 \mathrm{go}(1)=43 * 1.7 \mathrm{e} 6,0.0$
jst $=10 * 1,3 * 2,6 * 3,4 * 4,7 * 5,5 * 6,8 * 5,5$

```
qf(1) =0.34,0.67,0.96,1.18,1.31,1.36,1.31,1.19,0.98,0.70,0.35,
x(1) = 0.00,0.32,0.64,0.96,1.28,1.60,1.92,2.24,2.56,2.88,3.20,
qf(12)=0.43,0.72,0.97,1.15,1.26,1.31,1.27,1.16,0.98,0.75,0.45,
x(12) = 0.00,0.32,0.64,0.96,1.28,1.60,1.92,2.24,2.56,2.88,3.20,
qf(23)=0.46,0.70,0.95,1.14,1.22,1.23,1.27,1.21,1.03,0.75,0.45,
x(23) = 0.00,0.32,0.64,0.96,1.28,1.60,1.92,2.24,2.56,2.88,3.20,
qf(34)=0.45,0.75,0.98,1.13,1.19,1.19,1.21,1.16,1.05,0.85,0.50,
x(34) = 0.00,0.32,0.64,0.96,1.28,1.60,1.92,2.24,2.56,2.88,3.20,
qf(45)=0.78,0.94,1.07,1.08,1.05,1.01,1.02,1.04,1.06,0.96,0.72,
x(45)=0.00,0.32,0.64,0.96,1.28,1.60,1.92,2.24,2.56,2.88,3.20,
qf(56)=0.51,0.68,0.92,1.13,1.24,1.26,1.27,1.18,1.04,0.80,0.45,
x(56)= 0.00,0.32,0.64,0.96,1.28,1.60,1.92,2.24,2.56,2.88,3.20,
ProblemTime=
0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 1., 25., 52., 88.,
96., 136., 148., 180., 224.,
254., 274., 280., 286., 310.,
350., 400., 450., 500., 526.,
565., 609., 650., 700., 750.,
800., 830., 882., 900., 932.,
950., 997., 1029., 1037., 1062.,
1087., 1112., 1137,1138
qmpy =
1., 2., 3., 4., 5.,
6., 7.45, 7.45, 7.45, 7.00,
6.60, 4.9, 5.7, 6.0, 6.5,
6.3, 2.7, 11.7, 12.5, 11.8,
5*12.6,
12.2, 12.2, 11.8, 11.8, 11.4,
9.4, 9.4, 9.7, 9.7, 9.7,
9.5, 9.3, 9.8, 10.3, 10.2,
10.2, 10.2, 10.2,0.0
slim = .05,
$end
```


111-I-5 Void Volume Case

```
* GOESINS:
FILE05='nullfile', STATUS='scratch', FORM='FORMATTED',
    CARRIAGE CONTROL='LIST'
*
* GOESOUTS:
FILE06='out111I5.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='111i5.plot', STATUS='UNKNOWN', FORM='FORMATTED',
    CARRIAGE CONTROL='LIST'
/****************************************************************************
    Westinghouse BR-3 Rod 111I5
$frpcn
im=37, na=6, nr=15,
ngasr = 45,
$end
$frpcon
nplot=1
cpl = 4.0145, crdt = 1., crdtr = 0.0, thkcld=0.0244,
dco = 0.4220, pitch = 0.56,
den = 94.77, dishsd = 0.0504, thkgap=0.00375, dspg = 0.358,
dspgw = 0.055, enrch = 5.2, fgpav = 214.4, hdish = 0.014,
hplt = 0.60, icm = 4,
icor = 0, idxgas = 1, iplant = -2, iq = 0, jdlpr = 0,fa = 1.0,
jn = 15,15,15,15,15,15,
```

```
totl = 3.2, roughc = 1.97e-5, roughf = 2.36e-5, vs = 8.0,
nunits = 1, rsntr = 101.9,nsp=1
flux = 7*0.21e17, p2(1) = 36*2199.0,14.7
tw(1) = 36*491,77.0 go(1) = 36*1.9e6,0.0
jst = 12*1, 4*2, 5*3, 2*4, 7*5, 6*6,6
qf(1) =0.7664,0.8658,0.9845,1.1023,1.1807,1.2342,1.2358,1.2457,1.2700,
1.2596,0.5681,0.9040,0.8493,0.9745,0.7389,
x(1) =0.000,0.229,0.457,0.686,0.914,1.143,1.371,1.600,
1.829,2.057,2.286,2.514,2.743,2.971,3.200,
qf(16)=0.5596,0.7407,0.9187,1.0442,1.1286,1.1877,1.1823,1.1865,1.2100,
1.2070,1.1482,1.0821,0.9825,0.8038,0.6182,
x(16) =0.000,0.229,0.457,0.686,0.914,1.143,1.371,1.600,
1.829,2.057,2.286,2.514,2.743,2.971,3.200,
qf(31)=0.8369,0.9372,1.0473,1.0767,1.0800,1.0658,1.0271,1.0104,1.0124,
1.0248,1.0420,1.0589,1.0366,0.9407,0.8033,
x(31)=0.000,0.229,0.457,0.686,0.914,1.143,1.371,1.600,
1.829,2.057,2.286,2.514,2.743,2.971,3.200,
qf(46)=0.6462,0.7377,0.8727,1.0046,1.1217,1.2000,1.2275,1.2397,1.2500,
1.2296,1.1543,1.0474,0.8998,0.7382,0.6305,
x(46) =0.000,0.229,0.457,0.686,0.914,1.143,1.371,1.600,
1.829,2.057,2.286,2.514,2.743,2.971,3.200,
qf(61)=0.6369,0.7298,0.8754,1.0251,1.1425,1.2217,1.2616,1.2623,1.2700,
1.2442,1.1797,1.0990,0.9812,0.7957,0.2748,
x(61)=0.000,0.229,0.457,0.686,0.914,1.143,1.371,1.600,
1.829,2.057,2.286,2.514,2.743,2.971,3.200,
qf(76)=0.7999,0.8922,1.0090,1.0770,1.1000,1.0710,1.0406,1.0359,1.0462,
1.0615,1.0863,1.0914,1.0176,0.9149,0.7565,
x(76)=0.000,0.229,0.457,0.686,0.914,1.143,1.371,1.600,
1.829,2.057,2.286,2.514,2.743,2.971,3.200,
ProblemTime=
0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 1.0,
4.2, 10.0, 35.2, 62.5, 104.2,
166.7, 208.3, 250.0, 333.3, 416.6,
500.0, 500.2, 500.4, 500.6, 502., 503.8, 554.3, 572.9,
602.1, 656.3, 720.8, 723.8, 752.9,
760.4, 762.5, 860.8,861.8
qmpy =
1., 2., 3., 4., 5.0,
6., 7., 8., 9., 10.0,
13.138, 13.935, 12.724, 12.914, 12.914,
12.914, 12.724, 12.372, 11.703, 11.097,
10.491, 9., 7.5, 5., 4.232, 6.676, 8.131, 5.143,
8.231, 8.131, 7.720, 5.243, 8.053,
8.398, 5.143, 8.331,0.0
slim = 0.05,
$end
```


A. 17 Zorita Rod

Four fuel assemblies were initially irradiated in Zroita cycles 1 and 2. A total of 41 of the fuel rods in each assembly were removable, and 16 of these rods per assembly had high enrichment (4.08 to $6.6 \mathrm{wt} \%$ ${ }^{235} \mathrm{U}$) to achieve high linear power levels and burnups. One of these rods, rod 332 (Balfour et al. 1982), with high enrichment that was irradiated up to $57 \mathrm{GWd} / \mathrm{MTU}$, was selected as an FGR assessment case for FRAPCON-3.4. This case is shown below.

332 Case

* GOESINS:

FILE05='nullfile', STATUS='scratch', FORM='FORMATTED', CARRIAGE CONTROL='LIST'
*

* GOESOUTS:

FILE06='out332.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'

```
/********************************************************************************
    Zorita rod 332
    $frpcn
    im=36, na=8,
    mechan = 2, ngasr = 45,
    $end
    $frpcon
    cpl = 15.618, crdt = 1., crdtr = 0.0, dco = 0.4229,
    thkcld = 0.0249, thkgap = 0.00315, pitch = 0.55,
    den = 93.8, dishsd = 0.050, dspg = 0.368,
    dspgw = 0.055, enrch = 6.60, fgpav = 500.0, hdish = 0.0135,
    hplt = 0.6122, icm = 4,
    icor = 0, idxgas = 1, iplant = -2, iq = 0, jdlpr = 1,fa = 1.0,
    jn = 15,15,15,15,15,15,15,15
    totl = 7.084, roughc = 2.e-5, roughf = 8.e-5, vs = 28.0,
    nunits = 1, rsntr = 150.,
    flux = 9*0.18e17, p2(1) = 1990.0, tw(1) = 533, go(1) = 19000000.0,
    jst = 3*1, 7*2, 6*3, 4, 5, 4*6, 7, 7*8, 6*7
    qf(1) = 0.285,0.520,0.719,0.863,1.085,1.204,1.204,1.305,1.341,
        1.294,1.278,1.205,1.065,0.906,0.729,0.727,
    x(1) = 0.0,0.506,1.012,1.518,2.024,2.53,3.036,3.542,
            4.048,4.554,5.06,5.566,6.072,6.578,7.084,
    qf(16) =0.432,0.703,0.881,0.950,1.101,1.149,1.096,1.162,1.188,
        1.160,1.180,1.148,1.063,0.962,0.827,
    x(16) = 0.0,0.506,1.012,1.518,2.024,2.53,3.036,3.542
        4.048,4.554,5.06,5.566,6.072,6.578,7.084,
    qf(31) =0.601,0.822,1.005,0.989,1.072,1.061,0.976,1.018,1.040,
        1.019,1.061,1.087,1.079,1.080,1.032,
    x(31) = 0.0,0.506,1.012,1.518,2.024,2.53,3.036,3.542,
            4.048,4.554,5.06,5.566,6.072,6.578,7.084,
    qf(46) =0.700,0.878,0.955,0.973,1.029,1.044,1.034,1.057,1.059,
        1.051,1.079,1.072,1.049,1.031,0.988,
    x(46) = 0.0,0.506,1.012,1.518,2.024,2.53,3.036,3.542,
            4.048,4.554,5.06,5.566,6.072,6.578,7.084,
    qf(61) =1.090,1.145,1.170,1.180,1.170,1.155,1.130,1.090,1.050,0.990,
            0.930,0.850,0.770,0.700,0.640,
    x(61) = 0.0,0.506,1.012,1.518,2.024,2.53,3.036,3.542,
                4.048,4.554,5.06,5.566,6.072,6.578,7.084,
    qf(76) =0.689,0.926,1.010,1.012,1.066,1.066,1.031,1.045,1.046,
        1.027,1.053,1.048,1.018,1.003,0.961,
```

```
x(76) = 0.0,0.506,1.012,1.518,2.024,2.53,3.036,3.542,
            4.048,4.554,5.06,5.566,6.072,6.578,7.084,
qf(91) =0.754,0.942,1.037,1.002,1.079,1.071,0.985,1.014,1.022,
            0.990,1.043,1.050,1.013,1.010,0.937,
x(91) = 0.0,0.506,1.012,1.518,2.024,2.53,3.036,3.542,
            4.048,4.554,5.06,5.566,6.072,6.578,7.084,
qf(106)=0.574,0.774,0.915,0.961,1.090,1.133,1.085,1.139,1.152,
    1.111,1.131,1.100,1.020,0.950,0.866,
x(106) = 0.0,0.506,1.012,1.518,2.024,2.53,3.036,3.542,
                4.048,4.554,5.06,5.566,6.072,6.578,7.084,
    ProblemTime=
0.1, 30.0, 69., 123., 165.,
232., 298., 322., 368., 400.,
472., 491., 509., 600., 697.,
720., 774, 774.33, 805., 820.,
900., 981., 994., 1007., 1032.,
1041., 1069., 1077., 1138., 1200.,
1264., 1295., 1302., 1312., 1320.,
1334.
    qmpy =
    3.0, 6.13, 6.13, 4.45, 4.75,
7.80, 8.38, 9.01, 6.05, 7.21,
8.90, 7.92, 3.26, 8.90, 6.28,
8.84, 9.89, 9.89, 9.29, 9.48,
9.04, 9.04, 3.91, 5.45, 7.23,
7.90, 9.21, 8.56, 8.92, 8.53,
8.53, 8.29, 5.47, 8.09, 5.34,
8.09,
slim = .05,
$end
```


A. 18 BNFL BR-3 Rods

Battelle, Pacific Northwest Laboratories administered the international group-sponsored High Burnup Effects Program (HBEP), which continued from 1978 to 1990. The objective of the HBEP was to determine the effects of extended burnup on fuel rod performance, especially FGR. A variety of test rods and commercial power reactor rods were irradiated and examined under the HBEP, including two PWR assemblies (366 and 373) (Lanning et al. 1987; Barner et al. 1990) containing PWR-type test rods irradiated in a single assembly in the BR-3 test reactor in Mol, Belgium. Both of these assemblies experience high power, and the rods showed significant FGR.

One rod from each assembly (rod DE from 373 and rod 5-DH from 366) was selected to be part of the $\mathrm{UO}_{2} \mathrm{FGR}$ assessment cases for FRAPCON-3.4. These cases are shown below.

Rod DE from Assembly 373

```
* GOESINS:
FILE05='nullfile', STATUS='scratch', FORM='FORMATTED',
                CARRIAGE CONTROL='LIST'
*
* GOESOUTS:
FILE06='outBNFLDE.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='BNFLDE.plot', STATUS='UNKNOWN', FORM='FORMATTED',
                CARRIAGE CONTROL='LIST'
/************************************************************************
                BNFL BR-3 rod DE
    $frpcn
    im=36, na=10,
    ngasr = 45,
    $end
    $frpcon
    cpl = 3.8, crdt = 0.0, crdtr = 0.0, dco = 0.4244, pitch=0.556,
    den = 93.1, dishsd = 0.0456, dspg = 0.37,dspgw = 0.055,
    thkcld = 0.0246, thkgap=0.0052,fa=1.,
    enrch = 8.9, fgpav = 14.7, hdish = 0.015,
    hplt = 0.4488, icm = 4, nplot =1,
    icor = 0, idxgas = 1, iplant =-2, iq = 0, jdlpr = 1,
    jn = 11,11,11,11,11,11,11,11
    totl = 3.3, roughc = 1.e-5, roughf = 3.e-5, vs = 8.0,
    nunits = 1, rsntr = 75,
    flux = 11*0.16e17, p2(1) = 2230.0, tw(1) = 491, go(1) = 19000000.0,
    jst = 7*1,4*2,5*3,5*4,4*5,7*6,3*7,1*8
    qf(1) = 0.29, 0.49, 0.72, 0.90, 1.0, 1.0, 0.95, 0.86, 0.69, 0.49.0.31,
    x(1) = 0,0.33,0.66,0.99,1.32,1.65,1.98,2.31,2.64,2.97,3.3,
    qf(12) =0.39, 0.57, 0.79, 0.93, 1.01 1.01 0.99, 0.94, 0.81, 0.61,0.44,
    x(12) = 0,0.33,0.66,0.99,1.32,1.65,1.98,2.31,2.64,2.97,3.3,
    qf(23) =0.43, 0.60, 0.81, 0.94, 1.0, 1.0, 1.00, 0.96, 0.84, 0.65, 0.48,
    x(23) = 0,0.33,0.66,0.99,1.32,1.65,1.98,2.31,2.64,2.97,3.3,
    qf(34) =0.46, 0.63, 0.83, 0.95, 1.0, 1.0, 1.00, 0.97, 0.87, 0.69,0.51,
    x(34) = 0,0.33,0.66,0.99,1.32,1.65,1.98,2.31,2.64,2.97,3.3,
    qf(45) =0.55, 0.72, 0.89, 0.98, 1.0, 1.0, 1.01, 1.00, 0.93, 0.78,0.62,
    x(45) = 0,0.33,0.66,0.99,1.32,1.65,1.98,2.31,2.64,2.97,3.3,
    qf(56) =0.47, 0.64, 0.84, 0.96, 1.0, 1.0, 1.00, 0.98, 0.87, 0.70,0.52,
    x(56) = 0,0.33,0.66,0.99,1.32,1.65,1.98,2.31,2.64,2.97,3.3,
    qf(67) =0.57, 0.74, 0.91, 0.99, 1.0, 1.0, 1.01, 1.01, 0.95, 0.81,0.64,
    x(67) = 0,0.33,0.66,0.99,1.32,1.65,1.98,2.31,2.64,2.97,3.3,
```

```
qf(78) =0.69, 0.86, 0.99, 1.02, 1.0, 1.0, 1.02, 1.04, 1.03, 0.93, 0.78,
x(78) = 0,0.33,0.66,0.99,1.32,1.65,1.98,2.31,2.64,2.97,3.3,
ProblemTime=
    0.1, 27.0, 41.0, 101.5, 108.5,
150.5, 216.5, 289.7, 339.7, 357.2,
380.2, 394.7, 415.7, 488.5, 581.5,
670.5, 740.9, 818.9, 877.9, 950.7,
1014.7, 1073.3, 1119.5, 1165.0, 1233.5,
1260.5, 1317.5, 1346.8, 1399.9, 1437.6,
1471.6, 1505.9, 1547.3, 1554.8, 1602.0,
1658.7
qmpy =
    7.045, 7.045, 8.355, 8.939, 7.023
    9.894,10.567,11.224, 6.589,10.11
10.942, 6.282, 3.319, 3.492, 2.84
    3.335, 2.772, 2.132, 3.977, 2.435
    3.749, 3.727, 3.442, 3.389, 2.926
    2.147, 4.005, 2.452, 3.776, 3.555
    3.284,3.233,3.520, 3.682, 3.637
    3.754
slim = .05,
$end
```


Rod 5-DH from Assembly 366

* GOESINS:

```
FILE05='nullfile', STATUS='scratch', FORM='FORMATTED',
    CARRIAGE CONTROL='LIST'
*
* GOESOUTS:
FILE06='outBNFLDH.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='BNFLDH.plot', STATUS='UNKNOWN', FORM='FORMATTED',
    CARRIAGE CONTROL='LIST'
/************************************************************************
```

 BNFL BR-3 rod DH
 \$frpen
im=31, na=10,
ngasr $=45$,
\$end
\$frpcon
cpl $=3.8, \operatorname{crdt}=0.0, \operatorname{crdtr}=0.0, \mathrm{dco}=0.4244$, pitch=0.556,
den $=93.1$, dishsd $=0.0456, ~ d s p g=0.37$, dspgw $=0.055$,
thkcld $=0.0246$, thkgap $=0.0042$,
enrch $=9.0$, fgpav $=200.0$, hdish $=0.015$,
hplt $=0.4488$, $i c m=4$, nplot $=1$,
icor $=0$, idxgas $=1$, iplant $=-2$, iq $=0, j d l p r=0$,
jn $=11,11,11$, fa=1.0,
totl $=3.3$, roughc $=1 . e-5$, roughf $=3 . e-5, \mathrm{vs}=8.0$,
nunits $=1$, rsntr $=75$,
flux $=11 * 0.16 e 17, \mathrm{p} 2(1)=2230.0$, $\mathrm{tw}(1)=491, \mathrm{go}(1)=19000000.0$,
jst $=11 * 1,7 * 2,13 * 3$
qf(1) $=0.29,0.49,0.72,0.90,1.0,1.0,0.95,0.86,0.69,0.49,0.31$,
$x(1)=0,0.33,0.66,0.99,1.32,1.65,1.98,2.31,2.64,2.97,3.3$,
qf(12) $=0.39,0.57,0.79,0.93,1.011 .010 .99,0.94,0.81,0.61,0.44$,
$x(12)=0,0.33,0.66,0.99,1.32,1.65,1.98,2.31,2.64,2.97,3.3$,
$q f(23)=0.43,0.60,0.81,0.94,1.0,1.0,1.00,0.96,0.84,0.65,0.48$,
$x(23)=0,0.33,0.66,0.99,1.32,1.65,1.98,2.31,2.64,2.97,3.3$,
ProblemTime=

```
0.1, 25., 45., 55., 70.,105.,150.,160.,180.,190.,215.,
270.,300.,310.,330.,350.,360.,380.,
400.,420.,460.,480.,500.,520.,530.,550.,580.,585.,595.,620.,670.,
qmpy =
    3.700, 8.140,10.286,11.026, 9.028
11.026,12.654,11.766,13.098,12.432
12.876,13.082,12.516, 7.914, 7.348
    8.156,11.305,12.032, 6.521, 9.328
10.071, 9.081, 7.017, 4.293, 4.788
    4.045, 4.540, 5.531, 4.540, 5.779
    5.531
slim = .05,
$end
```


A. 19 DR-3 Rods

Test 022 comprised three $\mathrm{UO}_{2}-\mathrm{Zr}$ test fuel pins which were irradiated in the DR-3 reactor at Risø, Denmark, at 7.2 $\mathrm{MPa}(70 \mathrm{~atm})$ system pressure (Bagger et al. 1978). A burnup of approximately $42 \mathrm{GWd} / \mathrm{MTU}$ was accumulated at heat loads in the range of 35 to $53 \mathrm{~kW} / \mathrm{m}$. Fission gas analysis for two of the pins (PA29-4 and M2-2C) showed that the releases were 49 and 36 percent.

The three almost identical test fuel pins had 12.6 mm sintered UO_{2} pellets of 2.28 percent enrichment in 128 mm long stacks. The cladding was cold-worked and stress-relieved $\mathrm{Zr}-2$ tubing of approximately 0.55 mm wall thickness which had been autoclaved on both sides. The diametral pellet-clad clearance was 0.24 mm , and the pins were backfilled with 0.1 MPa (1 atm) helium.

These two rods were used to assess the FRAPCON-3.4 UO UO_{2} FGR predictions. The input files used for the $\mathrm{UO}_{2} \mathrm{FGR}$ assessments are shown below.

PA29-4

* GOESINS:

FILE05='nullfile', STATUS='scratch', FORM='FORMATTED', CARRIAGE CONTROL='LIST'
*

* GOESOUTS:

FILE06='outPA29-4.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'

RISO Rod PA29-4
\$frpcn
$i m=133, \mathrm{na}=10$, $\mathrm{nr}=17$,
mechan $=2$, ngasr $=45$,
\$end
\$frpcon
cpl $=0.01544$, thkcld=0.00059, dco $=0.01402$, den $=94.7$,
pitch $=0.0128$,fa $=1.0$, iq $=0$,
dishsd $=0.00071$, thkgap=0.00012, enrch $=2.28$, fgpav $=1.0134 e 5$
hplt $=0.0125, ~ i c m=2$, idxgas $=1$, iplant $=-3, j d l p r=1, j n=8 * 11$,
nunits $=0, \mathrm{p} 2=70.94 e 5$, roughc $=8.9 e-7$, roughf $=8.9 e-7$, totl $=0.128$
$t w=554 .$, rsntr $=110 .$, hdish=0.00038, dspg=0.00889,
jst (1) $=25 * 1,11 * 2,11 * 3,19 * 4,13 * 5,14 * 6,19 * 7,21 * 8$
$x(1)=0 ., .0128, .0256, .0384, .0512, .0640, .0768, .0896, .1024, .1152, .1280$,
$x(12)=0 ., .0128, .0256, .0384, .0512, .0640, .0768, .0896, .1024, .1152, .1280$,
$x(23)=0 ., .0128, .0256, .0384, .0512, .0640, .0768, .0896, .1024, .1152, .1280$,
$x(34)=0 ., .0128, .0256, .0384, .0512, .0640, .0768, .0896, .1024, .1152, .1280$,
$x(45)=0 ., .0128, .0256, .0384, .0512, .0640, .0768, .0896, .1024, .1152, .1280$,
$x(56)=0 ., .0128, .0256, .0384, .0512, .0640, .0768, .0896, .1024, .1152, .1280$,
$x(67)=0 ., .0128, .0256, .0384, .0512, .0640, .0768, .0896, .1024, .1152, .1280$,
$x(78)=0 ., .0128, .0256, .0384, .0512, .0640, .0768, .0896, .1024, .1152, .1280$,
$q f(1)=0.438,9 * 1.063,0.438$,
qf $(12)=0.711,9 * 1.032,0.711$,
$q f(23)=0.788,9 * 1.024,0.788$,
qf $(34)=0.858,9 * 1.016,0.858$,
$q f(45)=0.913,9 * 1.010,0.913$,
$q f(56)=0.950,9 * 1.006,0.950$,
$q f(67)=0.986,9 * 1.002,0.986$,
qf $(78)=11 * 1.0$,
ProblemTime $=0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1,5 ., 22.9,23 ., 34$. , $46.2,57 ., 69.6,69.7,78 ., 92.9,103 ., 116.3,125 ., 135.6,146 .$,

```
159.1,170.,182.3,193.,205.3,205.4,216.,228.7,239.,251.9,
262.,275.3,286.,298.7,309.,322.,332.,345.4,345.5,356.,
361.8,361.9,372.,385.,395.,408.1,418.,431.3,431.4,442.,
454.5,465.,477.8,488.,501.1,501.2,501.3,501.4,512.,524.5,
524.6,535.,545.,555.,565.,575.,585.2,596.,608.5,619.,
631.7,642.,654.8,665.,678.2,678.3,678.4,678.5,689.,701.4,
701.5,701.6,707.7,712.,724.4,735.,747.7,758.,771.3,771.4,
782.,794.6,806.,817.8,828.,840.9,851.,864.4,864.5,864.6,
864.7,864.8,875.,886.1,896.,909.,919.,930.7,930.8,941.,
954.,967.,982.9,993.,1005.8,1017.,1028.9,1030.,1041.,
1052.,1063.,1079.8,1079.9,1080.,1080.1,1080.2,1080.3,
qmpy = 5.,10.,15.,20.,25.,30.,35.,40.,45.,50.,3*53.4,55.4,2*57.4,
2*55.7,53.,2*49.9,2*51.1,2*49.9,4*52.8,2*51.3,53.5,2*55.5,
2*52.7,2*50.9,2*49.5,2*46.9,2*48.3,50.5,2*52.7,50.,2*46.9,
2*45.1,2*44.0,41.5,2*39.1,2*40.8,2*41.4,43.5,45.5,47.5,
2*49.5,51.7,3*54.2,3*51.3,2*50.4,2*47.5,2*46.6,2*49.8,52.,
54.,56.,2*58.5,56.,53.,50.,2*46.9,2*45.5,2*48.4,46.,
4*44.0,2*41.1,2*39.7,41.5,43.5,45.5,47.5,2*49.5,2*51.3,
    2*52.7,50.,2*46.9,2*46.6,4*48.1,49.5,2*51.0,2*48.1,40.,
    30.,20.,10.,0.1,
$end
```


M2-2C

* GOESINS:

FILE05='nullfile', STATUS='scratch', FORM='FORMATTED', CARRIAGE CONTROL='LIST'
*

* GOESOUTS:

FILE06='outM2-2C.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'

```
/***********************************************************************
        RISO Rod M2-2C
    $frpcn
im=35, na=10, nr=17,
mechan = 2, ngasr = 15,
$end
$frpcon
cpl = 0.01544, thkcld=0.00053, dco = 0.01402, den = 94.7,
dishsd = 0.00071, thkgap=0.00012, enrch = 2.28, fgpav = 1.0134e5
hplt = 0.0125, icm = 2,idxgas = 1, iplant = -3, jdlpr = 1,jn = 8*11,
nunits=0, p2=70.94e5, roughc = 8.9e-7, roughf = 8.9e-7, totl=0.128
tw=554., rsntr = 110., hdish=0.00038,dspg=0.00889,
go=3.39e3, pitch = 0.016,
iq=0, fa=1,
jst(1) = 5*1,4*2,4*3,4*4,4*5,4*6,4*7,6*8,
x(1)=0.,.0128,.0256,.0384,.0512,.0640,.0768,.0896,.1024,.1152,.1280,
x(12)=0.,.0128,.0256,.0384,.0512,.0640,.0768,.0896,.1024,.1152,.1280,
x(23) =0.,.0128,.0256,.0384,.0512,.0640,.0768,.0896,.1024,.1152,.1280,
x(34)=0.,.0128,.0256,.0384,.0512,.0640,.0768,.0896,.1024,.1152,.1280,
x(45)=0.,.0128,.0256,.0384,.0512,.0640,.0768,.0896,.1024,.1152,.1280,
x(56)=0.,.0128,.0256,.0384,.0512,.0640,.0768,.0896,.1024,.1152,.1280,
x(67)=0.,.0128,.0256,.0384,.0512,.0640,.0768,.0896,.1024,.1152,.1280,
x(78)=0.,.0128,.0256,.0384,.0512,.0640,.0768,.0896,.1024,.1152,.1280,
qf(1)=.287,.978,1.002,1.026,1.050,1.074,1.098,1.122,1.146,1.170,.386,
qf(12)=.545,.948,.971,.995,1.018,1.041,1.064,1.088,1.111,1.134,.716,
qf(23)=.646,.937,.960,.983,1.006,1.029,1.051,1.074,1.097,1.120,.841,
qf(34)=.717,.930,.953,.975,.997,1.020,1.042,1.065,1.087,1.110,.925,
qf(45)=.780,.923,.945,.968,.990,1.012,1.034,1.056,1.079,1.101,1.006,
```

```
qf(56)=.815,.920,.942,.964,.986,1.008,1.029,1.052,1.074,1.095,1.048,
qf(67)=.846,.916,.938,.960,.982,1.004,1.026,1.048,1.070,1.092,1.089,
qf(78)=.880,.914,.936,.958,.980,1.001,1.023,1.045,1.067,1.008,1.097,
ProblemTime=
.1,22.92,46.17,69.58,135.58,182.33,205.33,228.67,251.88,275.29,
298.67,345.38,361.79,384.96,431.29,501.13,524.54,555.04,585.17,
608.46,654.75,678.17,701.38,724.40,747.67,771.29,817.75,864.38,
886.13,909.04,930.71,982.92,1028.92,1052.00,1079.79,
qmpy =
16.4,50.3,54.1,52.5,47.4,49.8,48.4,52.4,49.7,47.3,
46.7,44.9,49.7,44.2,42.0,38.1,45.1,51.1,48.0,44.8,
44.5,47.0,55.2,44.3,42.9,45.7,41.6,38.2,46.7,48.4,
49.7,44.1,45.4,48.1,45.4,
$end
```


A. 20 NRX Rods

Several sets of UO_{2} fuel rods were irradiated in a pressurized water loop in the NRX reactor in Chalk River, Canada (De Meulemeester et al. 1973; Notley et al. 1967). The goal of these tests was to measure the gas pressures inside the rods, with the following objectives:

- To determine the effects of fuel density on gas pressure and FGR.
- To determine the effects of element power output variations on gas pressure and FGR.
- To obtain data to test the predictions of a model for calculating the variation of gas pressure with power output.

After irradiation, the rods were dimensioned and punctured for fission gas analysis. Samples from the rods were also analyzed for chemical burnup. Five of these rods were selected as $\mathrm{UO}_{2} \mathrm{FGR}$ assessment cases for FRAPCON-3.4 because they provide FGR data at low burnups ($<11 \mathrm{GWd} / \mathrm{MTU}$) while the other FGR assessment data were at burnups greater than $20 \mathrm{GWd} / \mathrm{MTU}$. Rods CBR, CBY, and CBP were irradiated together to $2.7 \mathrm{GWd} / \mathrm{MTU}$ in 85 days. Rod LFF was irradiated to $3.3 \mathrm{GWd} / \mathrm{MTU}$ in 108 days. Rod EPL-4 was irradiated to $10.4 \mathrm{GWd} / \mathrm{MTU}$ in 100 days.

The input files used for the $\mathrm{UO}_{2} \mathrm{FGR}$ assessments are shown below.

```
CBY
* GOESINS:
FILE05='nullfile', STATUS='scratch', FORM='FORMATTED',
    CARRIAGE CONTROL='LIST'
*
* GOESOUTS:
FILEO6='outCBY.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
/**************************************************************************
    NRX test rod CBY
    $frpcn
    im=8, na=4,
    mechan = 2, ngasr = 45,
    $end
    $frpcon
    cpl = 24.2, crdt = 1., crdtr = 0.0,
    thkgap = 0.01, thkcld = 0.02,
    dco = 0.6885, pitch = 0.9
    den = 95.0, dishsd = 0.18695, dspg = 0.64,
    dspgw = 0.055, enrch = 4.5, fgpav = 146.0, hdish = 0.01,
    hplt = 0.6043, icm = 2,
    icor = 0, idxgas = 1, iplant =-2, iq = 0, jdlpr = 1,fa = 1.0,
    jn = 4,
    totl = 0.798, roughc = 2.e-5, roughf = 5.e-5, vs = 2.0,
    nunits = 1, rsntr = 150.,
    flux = 5*0.18e17, p2(1) = 1178.0, tw(1) = 480, go(1) = 19000000.,
    jst = 8*1,
    qf(1) = 1,1,1,1,
    x(1) =0.0, 0.2295, 0.459, 0.798
    ProblemTime= 0.1,5, 17.2,34.3,51.5,68.7,85.9,89.6,
    qmpy= 5,7*16.55
    $end
```


CBR

```
GOESINS:
FILE05='nullfile', STATUS='scratch', FORM='FORMATTED',
    CARRIAGE CONTROL='LIST'
*
* GOESOUTS:
FILE06='outCBR.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
/******************************************************************************
    NRX test rod CBR
    $frpcn
    im=8, na=4,
    mechan = 2, ngasr = 45,
    $end
    $frpcon
    cpl = 24.2, crdt = 1., crdtr = 0.0,
    thkgap = 0.009, thkcld = 0.02,
    dco = 0.6885, pitch = 0.9
    den = 97.1, dishsd = 0.18695, dspg = 0.64,
    dspgw = 0.055, enrch = 4.5, fgpav = 146.0, hdish = 0.01,
    hplt = 0.6043, icm = 2,
    icor = 0, idxgas = 1, iplant =-2, iq = 0, jdlpr = 0,fa = 1.0,
    jn = 4,
    totl = 0.798, roughc = 2.e-5, roughf = 5.e-5, vs = 2.0,
    nunits = 1, rsntr = 150.,
    flux = 5*0.18e17, p2(1) = 1178.0, tw(1) = 480, go(1) = 19000000.,
    jst = 8*1,
    qf(1) = 1,1,1,1,
    x(1) =0.0, 0.2295, 0.459, 0.798
    ProblemTime= 0.1,5, 17.2,34.3,51.5,68.7,85.9,89.6,
    qmpy= 5,7*17.4
    $end
```


CBP

* GOESINS:

FILE05='nullfile', STATUS='scratch', FORM='FORMATTED', CARRIAGE CONTROL='LIST'
\star

* GOESOUTS:

FILE06='outCBP.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
 NRX test rod CBP
\$frpen
im=8, na=4,
ngasr $=45$,
\$end
\$frpcon
cpl $=24.2, ~ c r d t=1.0, ~ c r d t r=0.0$,
thkgap $=0.009$, thkcld $=0.02$,
dco $=0.6885$, pitch $=0.9$
den $=97.2$, dishsd $=0.18695, \mathrm{dspg}=0.64$,
dspgw $=0.055$, enrch $=4.5$, fgpav $=146.0$, hdish $=0.01$,
hplt $=0.6043$, icm $=2$,
icor $=0$, idxgas $=1$, iplant $=-2$, iq $=0, j d l p r=1, f a=1.0$,
jn = 4,
totl $=0.798$, roughc $=2 . e-5$, roughf $=5 . e-5, \mathrm{vs}=2.0$,
nunits $=1$, rsntr = 150.,

```
flux(1) = 5*0.18e17, p2(1) = 1178.0, tw(1) = 480, go(1) = 19000000.,
jst = 8*1,
qf(1) = 1.0,1.0,1.0,1.0,
x(1) =0.0, 0.2295, 0.459, 0.798,
ProblemTime = 0.1,5, 17.2,34.3,51.5,68.7,85.9,89.6,
qmpy= 5,7*16.8
$end
```


LFF

* GOESINS:
FILE05='nullfile', STATUS='scratch', FORM='FORMATTED',
CARRIAGE CONTROL='LIST'
*
* GOESOUTS:
FILE06='outLFF.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
$/ \star \star * ~$
NRX test rod LFF
\$frpen
im=12, na=4,
ngasr $=45$,
\$end
\$frpcon
cpl $=1.1$, crdt $=0, \operatorname{crdtr}=0.0, ~ t h k c l d=0.030$,
dco $=0.8108$, pitch $=0.90$,
den $=95.7$, dishsd $=0.2466$, thkgap=0.009, $\mathrm{dspg}=0.72$,
dspgw $=0.055$, enrch $=2.4$, fgpav $=146.0$, hdish $=0.02$,
hplt $=0.6043$, $i \mathrm{~cm}=4, \mathrm{fa}=1.0$,
icor $=0$, idxgas $=1$, iplant $=-2$, iq $=0, j d l p r=1$,
$j n=4$,
totl $=0.7975$, roughc $=2 . e-5$, roughf $=5 . e-5$, vs $=8.0$,
nunits $=1$, rsntr $=150$. ,
flux (1) $=5 * 0.18 \mathrm{e} 17, \mathrm{p} 2(1)=1000.0, \mathrm{tw}(1)=550, \mathrm{go}(1)=19000000.0$,
jst $=12 * 1$
$q f(1)=1,1,1,1$,
$x(1)=0.0,0.2658,0.5317,0.7975$
ProblemTime=
$0.1,0.2,0.3,0.4$,
5.0, 22.5, 44.9, 67.4, 89.9, 100.2,
120., 140 .
qmpy=
5, 8., 11., 14.,
8*17.8
\$end

EPL-4

* GOESINS:
FILE05='nullfile', STATUS='scratch', FORM='FORMATTED',
CARRIAGE CONTROL='LIST'
\star
* GOESOUTS:
FILE06='outEPL-4.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'

NRX test rod EPL-4
\$frpen
im=17, na=4,
ngasr $=45, \mathrm{nr}=17$

```
$end
$frpcon
cpl = 1.1, crdt = 0, crdtr = 0.0, thkcld=0.030,
dco = 0.3621, pitch = 0.90,
den = 93.9, dishsd = 0.2466, thkgap=0.005, dspg = 0.29,
dspgw = 0.055, enrch = 2.4, fgpav = 146.0, hdish = 0.02,
hplt = 0.6043, icm = 4,
icor = 0, idxgas = 1, iplant =-2, iq = 0, jdlpr = 1,
jn = 4, fa=1.0,
totl = 3.28, roughc = 2.e-5, roughf = 5.e-5, vs = 8.0,
nunits = 1, rsntr = 150.,
flux = 5*0.18e17, p2(1) = 1000.0, tw(1) = 550, go(1) = 19000000.0,
jst = 17*1
qf(1) = 1,1,1,1,
x(1) =0.0, 1.093, 2.187, 3.28
ProblemTime=
0.1,0.2,0.3,0.4,0.5,
0.6,0.7,0.8,0.9,1.,
1.1,1.2,
22.5, 44.9, 67.4, 89.9, 100.2
qmpy=
1.,2.,3.,4.,5.,
6.,7.,8.,9.,10.,
11.,12.,
5*12.3
$end
```


A. 21 EL-3 Rods

Sixteen cartridges, each containing two rods, were irradiated in the EL-3 reactor, France, for a varying number of cycles to achieve burnups from 3 to $12 \mathrm{GWd} / \mathrm{MTU}$. The aspects of the rods studied in this project were:

- Macroscopic appearances: crack network, material movement, and dimensional changes
- Microscopic appearances: recrystallization, pore redistribution, and new phases
- Migration of fission products: stable gases released by the fuel and distribution of solid fission products

Each cartridge was constructed of Zircaloy-2 and consisted of two separate stages, each containing a stack of UO_{2} fuel 123 mm high at each end, and in the central joint, space was provided for cobalt flux indicators. Each stage contained a chromel-alumel thermocouple located in the center of the stack. The cartridges were then filled with helium.

After irradiation, the rods were dimensioned and punctured for fission gas analysis. Gamma scans were done as well as a radiochemical analysis. The rods 4110-AE2 and 4110-BE2 (Janvier et al. 1967) were used to assess the UO_{2} FGR predictions of FRAPCON-3.4.

Both rods 4110-AE2 and 4110-BE2 contained fuel pellets with an as-fabricated density of $10.52 \mathrm{~g} / \mathrm{cm}^{3}$. AE 2 ran at a power of $17.6 \mathrm{~kW} / \mathrm{ft}$ while BE2 ran at a power of $17.8 \mathrm{~kW} / \mathrm{ft}$. Rods $4110-\mathrm{AE} 2$ and $4110-$ BE2 were maintained throughout life at constant average LHGRs of 17.6 and $17.8 \mathrm{~kW} / \mathrm{ft}$, respectively. Both ran with a flat axial power profile. The input LHGRs were a flat 17.6 and $17.8 \mathrm{~kW} / \mathrm{ft}$, with a few steps to get up to power.

These two rods were used to assess the FRAPCON-3.4 UO_{2} FGR predictions at burnups less than $15 \mathrm{GWd} / \mathrm{MTU}$. The input files used for the $\mathrm{UO}_{2} \mathrm{FGR}$ assessments are shown below.

```
4110-AE2
* GOESINS:
FILE05='nullfile', STATUS='scratch', FORM='FORMATTED',
        CARRIAGE CONTROL='LIST'
*
* GOESOUTS:
FILE06='out4110-ae2.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
/***********************************************************************
    EL-3 test rod number 4110-AE2
    $frpcn
    im=11, na=4,
    ngasr = 45,
    $end
    $frpcon
    cpl = 38.0, crdt = 0., crdtr = 0.0, dco = 0.5564,
    thkcld=0.020,
    pitch = 0.65,
    den = 96.0, dishsd = 0.1214, thkgap= 0.004, dspg = 0.51,
    dspgw = 0.055, enrch = 2.98, fgpav = 147.0, hdish = 0.0,
    hplt = 0.6043, icm = 2,
    icor = 0, idxgas = 1, iplant =-2, iq = 0, jdlpr = 1,fa = 1.0,
```

```
jn = 4
totl = 0.403, roughc = 2.e-5, roughf = 5.e-5, vs = 28.0,
nunits = 1, rsntr = 150.
flux = 5*0.18e17, p2(1) = 1000.0, tw(1) = 630, go(1)=19000000.0,
jst = 11*1
qf(1) = 1,1,1,1,
x(1) =0.0, 0.134, 0.269, 0.403
ProblemTime= 0.1, 0.2, 0.3,
15.0, 25.2, 45.7, 66.2, 86.6, 107.1, 127.6, 132.5
qmpy= 5., 9., 13.,8*17.6,
slim = .05,
$end
```


4110-BE2

* GOESINS:
FILE05='nullfile', STATUS='scratch', FORM='FORMATTED',
CARRIAGE CONTROL='LIST'
*
* GOESOUTS:
FILE06='out4110-be2.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'

EL-3 test rod number 4110-BE2
\$frpen
im=9, na=4,
ngasr $=45$,
\$end
\$frpcon
cpl $=38.0, ~ c r d t=0 ., ~ c r d t r=0.0, ~ d c o=0.5574$,
thkcld=0.020,
pitch $=0.65$,
den $=96.0$, dishsd $=0.1224$, thkgap $=0.0035, \mathrm{dspg}=0.51$,
dspgw $=0.055$, enrch $=2.98$, fgpav $=147.0$, hdish $=0.0$,
hplt $=0.6043$, icm $=2$,
icor $=0$, idxgas $=1$, iplant $=-2$, iq $=0, j d l p r=1, f a=1.0$,
$j n=4$
totl $=0.403$, roughc $=2 . e-5$, roughf $=5 . e-5, \mathrm{vs}=28.0$,
nunits $=1$, rsntr $=150$.
flux $=5 * 0.18 \mathrm{e} 17, \mathrm{p} 2(1)=1000.0$, $\mathrm{tw}(1)=630, \mathrm{go}(1)=19000000.0$,
jst $=9 * 1$
$q f(1)=1,1,1,1$,
$x(1)=0.0,0.134,0.269,0.403$
ProblemTime $=0.1,15.1,25.3,45.7,66.1,86.5,106.9,127.3,138.8$
qmpy $=5,12 ., 7 * 17.8$,
slim $=.05$,
\$end

A. 22 FUMEX 6f and 6s Rods

Two rods were base-irradiated in the Halden HBWR at low power to $55 \mathrm{GWd} / \mathrm{MTU}$. Each of these rods was then refabricated to include pressure transducers and run at higher power while the pressure was being monitored. These rods, FUMEX 6s and FUMEX 6 f (Chantoin et al. 1997) were included as FRAPCON-3.4 UO 2 FGR assessment cases.

The input files used for the FGR assessment are shown below.

FUMEX $6 f$

```
* GOESINS:
FILE05='nullfile', STATUS='scratch', FORM='FORMATTED',
        CARRIAGE CONTROL='LIST'
*
* GOESOUTS:
FILE06='outfumex6f.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
/**************************************************************************
FUMEX Case 6f - fast EOL Ramp
    $frpcn
    im=72, na=4, nr=17,
    mechan = 2, ngasr = 45,
    $end
    $frpcon
    cpl = 8.0, dco = 0.4929, thkcld = 0.0339,
    den = 94.7, thkgap = 0.00512, rc = 0.0, dspg = 0.42,
    dspgw = 0.04, enrch = 9.88,fgpav = 370, hplt = 0.41, hdish= 0.0,
    icm = 2, icor = 0, idxgas = 1, iplant = -4, iq = 0, fa = 1.0,
    jdlpr = 0, jn(1) = 5,5,5,5,5,5,
    jst(1) = 8*1,11*2, 5*3, 3*2, 1*4, 1*2, 8*5, 2*3, 7*5, 2*3, 15*6, 9*7,
    totl = 1.53, roughc = 2.5e-5, roughf = 8.5e-5, vs = 5.0,
    nunits = 1, rsntr = 100.,pitch =0.56, crephr=1.0,
    flux(1) = 5*.05e17, p2(1) = 500., tw(1) = 459., go(1) = 0.0,
        qf(1) =
    1.42, 1.26, 1.01,0.749,0.545,
    1.22, 1.14, 1.01, 0.87, 0.73,
    1.31, 1.19, 1.01, 0.81, 0.64,
    1.37, 1.24, 1.01, 0.77, 0.58,
    1.12, 1.09, 1.01, 0.92, 0.82,
    1.18, 1.13, 1.01, 0.88, 0.77,
    0.70, 0.84, 1.00, 1.16, 1.28,
    x(1) =
    0.0, 0.382, 0.765, 1.1475, 1.53,
    0.0, 0.382, 0.765, 1.1475, 1.53,
    0.0, 0.382, 0.765, 1.1475, 1.53,
    0.0, 0.382, 0.765, 1.1475, 1.53,
    0.0, 0.382, 0.765, 1.1475, 1.53,
    0.0, 0.382, 0.765, 1.1475, 1.53,
    0.0,0.382, 0.765, 1.1475, 1.53,
        ProblemTime =
        0.10, 0.20, 0.30, 0.40, 0.50,
            3.5, 15., 50., 59., 61., 100.,
        150., 156., 200., 250.,
        260., 275., 280., 310., 350., 360., 370., 400.,
        425., 450., (50.4
        490., 500., 550., 600., 650., 685.,
```

```
700., 710., 750., 780., 800., 810., 850., 890.,
940., 950., 1000., 1010., 1050., 1065., 1100., 1160.,
1200., 1250.,
1300., 1325., 1350., 1400., 1450., 1500.,
1550., 1600., 1660., 1695., 1702., 1745., 1755., 1800.
1800.2, 1800.4, 1800.6, 1800.8, 1801.,
1817. 1854., 1882., 1902.,
qmpy =
2., 4., 6., 8., 10. ,10. ,
7. , 7. , 10.,11.9, 10.5 ,10.87, 8.5 , 8.5 , 7.93,
6.12, 8. , 6. , 5.87, 6.1 , 7.71, 6.1 , 6.25,
8. , 6.25, 6.5 , 7.05, 5.69, 6.31, 6.96, 7. ,
8.98, 7. , 6.1 , 7. , 9. , 6.74, 6.74, 4.86,
6.13, 8.98, 8.25, 4.46, 7.71, 9.75, 8.15, 8.33,
7.58, 8.72, 8.45, 7.25, 8.25, 6.66, 4.69, 4.38,
4.47, 4. , 5. , 4.5 , 4.25, 4.5 , 5.4 , 5.5
6., 8., 9., 10., 11.,
13., 12.3, 11.8, 11.5,
$end
```


FUMEX 6s

* GOESINS:

FILE05='nullfile', STATUS='scratch', FORM='FORMATTED', CARRIAGE CONTROL='LIST'
*

* GOESOUTS:

FILE06='outfumex6s.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'

FUMEX Case 6s - Slow EOL Ramp
\$frpen
im=80, na=4, nr=17,
mechan $=2$, ngasr $=45$,
\$end
\$frpcon
$\mathrm{cpl}=8.0, \mathrm{dco}=0.4929$, thkcld $=0.0339, \mathrm{pitch}=0.56$,
den $=94.7$, thkgap $=0.00512, \mathrm{rc}=0.0, \mathrm{dspg}=0.42$,
dspgw $=0.04$, enrch $=9.88, f g p a v=370 .$, hplt $=0.41$, hdish= 0.0 ,
icm $=2$, icor $=0$, idxgas $=1$, iplant $=-4, ~ i q=0, f a=1.0$,
jdlpr $=0, j n(1)=5,5,5,5,5,5$,
jst(1) $=8 * 1,11 * 2,5 * 3,3 * 2,1 * 4,1 * 2,8 * 5,2 * 3,7 * 5,2 * 3,15 * 6,17 * 7$,
totl $=1.53$, roughc $=2.5 e-5$, roughf $=8.5 e-5$, vs $=5.0$,
nunits $=1$, rsntr $=100$. ,
flux (1) $=5^{*} .05 e 17, \mathrm{p} 2(1)=500 ., \operatorname{tw}(1)=459 ., \mathrm{go}(1)=0.0$, qf(1) =
1.42, 1.26, 1.01, 0.749, 0.545,
$1.22,1.14,1.01,0.87,0.73$,
1.31, 1.19, 1.01, 0.81, 0.64,
1.37, 1.24, 1.01, 0.77, 0.58,
$1.12,1.09,1.01,0.92,0.82$,
1.18, 1.13, 1.01, 0.88, 0.77,
$0.71,0.84,1.01,1.16,1.26$,
$x(1)=$
$0.0,0.382,0.765,1.1475,1.53$,
$0.0,0.382,0.765,1.1475,1.53$,
$0.0,0.382,0.765,1.1475,1.53$,
$0.0,0.382,0.765,1.1475,1.53$,
$0.0,0.382,0.765,1.1475,1.53$,

```
0.0,0.382, 0.765, 1.1475, 1.53,
0.0, 0.382, 0.765, 1.1475, 1.53,
    ProblemTime =
0.10, 0.20, 0.30, 0.40, 0.50,
        3.5, 15., 50., 59.,61.,100.,
    150., 156., 200., 250.,
    260., 275., 280., 310., 350., 360., 370., 400.,
    425., 450.,
    490., 500., 550., 600., 650., 685.,
    700., 710., 750., 780., 800., 810., 850., 890.,
    940., 950., 1000., 1010., 1050., 1065., 1100., 1160.,
    1200., 1250.,
    1300., 1325., 1350., 1400., 1450., 1500.,
    1550., 1600., 1660., 1695., 1702., 1745., 1755., 1800.
1800.1, 1800.2, 1800.3, 1802., 1804.,
1805., 1806., 1807, 1810., 1810.25, 1810.5, 1810.75, 1811.,
1812., 1832., 1866., 1885.,
    qmpy =
2., 4., 6., 8., 10. ,10. ,
    7. , 7. , 10.,11.9, 10.5 ,10.87, 8.5 , 8.5 , 7.93,
    6.12, 8. , 6. , 5.87, 6.1 , 7.71, 6.1 , 6.25,
    8. , 6.25, 6.5 , 7.05, 5.69, 6.31, 6.96, 7. ,
    8.98, 7. , 6.1 , 7. , 9. , 6.74, 6.74, 4.86,
    6.13, 8.98, 8.25, 4.46, 7.71, 9.75, 8.15, 8.33,
    7.58, 8.72, 8.45, 7.25, 8.25, 6.66, 4.69, 4.38,
    4.47, 4. , 5. , 4.5, 4.25, 4.5, 5.4, 5.5
5., 6., 7., 8., 9.,
11., 12., 13., 13., 14., 14.5, 15., 16.,
16., 15., 15., 13.
$end
```


A. 23 Halden IFA-429 Rod

The IFA-429 test fuel assembly (Turnbull 2001) was initiated by NRC-Research and designed and fabricated by Idaho National Laboratory (with fuel pellet fabrication by PNNL) to demonstrate the effect of burnup, power level, and fuel grain size on fuel thermal behavior and FGR. The assembly consisted of 18 original short rods, arranged in three clusters of 6 rods each, and 15 noninstrumented spare and replacement rods. Rod DH is a replacement rod that was re-instrumented with a pressure transducer after it had attained about $30 \mathrm{GWd} / \mathrm{MTU}$ burnup at relatively low LHGR; the rod was then irradiated in IFA519 at much higher and variable LHGR as part of a load-follow test, and eventually attained a peak burnup of $99 \mathrm{GWd} /$ MTU. The FGR for this rod was obtained by puncture during PIE. It should be noted that the puncture data provided much higher release values than were estimated from the pressure transducer measurements because the rod pressures had exceeded the measurement capabilities of the pressure transducer.

The input file used for the FGR assessment is shown below.

```
IFA-513 Rod 6 Case
* GOESINS:
FILEO5='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
                CARRIAGE CONTROL='NONE'
*
* GOESOUTS:
FILE06='429-DH.out',
            STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='429-DH.plot',
                STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'
/********************************************************************************
Base Irradiation
    $frpon
    im=224, nr=17, ngasr=45, na=5
    $end
    $frpcon
    dco=0.422, thkcld=0.024, thkgap=0.00394, totl=0.8005, cpl=4.9
    dspg=0.358, dspgw=0.055, vs=10
    hplt=0.5984, rc=0, hdish=0.013, dishsd=0.122
    enrch=13, imox=0, comp=0
    fotmtl=2, gadoln=0, ppmh2o=0, ppmn2=0
    den=95, deng=0, roughf=0.00008, rsntr=75, tsint=2911
    icm=4, cldwks=0.5, roughc=0.00001, catexf=0.05, chorg=10
    fgpav=375.6, idxgas=1
    iplant=-4, pitch=0.56, icor=0, crdt=0, crdtr=0,
    flux=6*50000000000000000
    crephr=10, sgapf=31, slim=0.05, qend=0.3
    jdlpr=1, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
    ProblemTime=
    0.107, 52.666, 98.375, 140.122, 186.152
    247.275, 292.02, 328.522, 367.058, 388.468
    406.665, 468.109, 501.293, 556.315, 612.942
    694.617, 764.625, 802.519, 821.038, 871.884
    899.181, 944.889, 973.363, 1008.581, 1050.65
    1076.127, 1083.484, 1092.917, 1095.322, 1096.736
    1102.202, 1106.118, 1112.926, 1114.494, 1122.588
    1124.846, 1127.706, 1129.905, 1133.554, 1138.839
    1140.901, 1156.586, 1156.899, 1166.598, 1174.076
```

```
1177.247, 1177.896, 1188.702, 1193.167, 1196.827
1201.568, 1204.695, 1208.179, 1213.462, 1214.348
1220.713, 1222.388, 1228.393, 1228.52, 1234.654
1234.776, 1237.137, 1242.143, 1242.723, 1248.617
1250.83, 1252.786, 1256.383, 1261.73, 1271.233
1274.658, 1279.632, 1287.232, 1287.607, 1292.604
1296.517, 1308.795, 1311.263, 1319.303, 1324.69
1327.568, 1335.828, 1338.234, 1342.781, 1348.062
1357.185, 1363.576, 1374.935, 1381.616, 1388.955
1392.641, 1399.322, 1402.213, 1409.1, 1416.818
1420.249, 1424.529, 1427.328, 1429.139, 1434.281
1447.456, 1453.785, 1478.063, 1483.68, 1495.168
1507.311, 1513.647, 1514.144, 1523.431, 1529.12
1537.496, 1553.678, 1557.822, 1574.023, 1577.104
1583.743, 1588.679, 1597.283, 1598.01, 1602.52
1603.81, 1621.357, 1626.793, 1630.935, 1656.04
1661.731, 1678.402, 1681.153, 1685.674, 1701.61
1707.839, 1707.91, 1712.024, 1716.861, 1721.106
1721.821, 1725.39, 1728.832, 1731.344, 1731.472
1744.411, 1750.486, 1792.74, 1802.71, 1805.017
1806.129, 1818.219, 1818.389, 1830.079, 1832.081
1832.918, 1849.596, 1853.814, 1873.91, 1874.796
1900, 1903.009, 1914.922, 1922.959, 1923.484
1930.055, 1935.636, 1938.468, 1949.727, 1949.953
1957.606, 1971.239, 1974.114, 1979.215, 1981.361
1997.831, 1999.49, 2007.921, 2019.334, 2030.442
2071.124, 2071.296, 2088.608, 2092.605, 2101.635
2111.086, 2114.178, 2122.165, 2126.12, 2128.571
2151.032, 2151.235, 2154.715, 2158.033, 2165.988
2173.162, 2181.591, 2183.74, 2190.745, 2203.826
2207.841, 2210.694, 2212.49, 2306.431, 2312.752
2316.966, 2328.726, 2351.996, 2359.229, 2366.216
2379.106, 2380.726, 2410.946, 2416.25, 2419.379
2429.008, 2440.578, 2441.865, 2464.408, 2484.045
2488.399, 2506.505, 2539.723, 2548.695, 2550.965
2561.464, 2564.636, 2594.665, 2615.101
qmpy=
4.27, 4.27, 4.88, 5.34, 4.88
5.49, 5.03, 6.1, 5.79, 5.34
6.1, 5.49, 6.71, 6.1, 5.95
5.49, 3.18, 5.95, 5.95, 4.42
4.12, 4.88, 3.96, 4.42, 4.27
4.42, 10.933, 10.983, 11.547, 11.09
10.953, 11.355, 11.433, 11.809, 11.644
12.02, 11.83, 11.964, 9.785, 9.784
11.987, 11.417, 9.777, 9.774, 10.873
10.872, 7.162, 7.187, 9.416, 9.442
8.204, 7.424, 7.369, 9.572, 9.518
9.435, 8.601, 8.627, 10.347, 10.855
11.258, 11.956, 12.25, 11.712, 11.683
11.682, 9.585, 9.584, 9.824, 10.063
10.491, 10.194, 10.218, 8.632, 8.604
10.162, 9.701, 7.631, 7.414, 8.998
9.078, 7.839, 9.478, 9.476, 10.362
10.412, 11.216, 11.454, 11.774, 11.717
11.42, 9.187, 10.584, 11.925, 12.567
12.028, 12.295, 12.186, 9.793, 10.571
```

A. 102

```
10.432, 8.495, 8.112, 10.879, 11.412
12.321, 12.157, 11.27, 9.6, 8.335
9.891, 10.182, 11.39, 11.115, 10.388
10.386, 10.68, 11.241, 12.021, 12.045
11.238, 11.312, 10.746, 8.863, 8.936
9.311, 9.306, 8.902, 11.427, 11.34
10.746, 8.381, 8.38, 10.152, 10.151
9.64, 10.015, 10.283, 10.255, 9.879
9.767, 10.141, 7.765, 7.789, 8.46
8.809, 8.457, 7.812, 7.808, 6.652
8.829, 8.126, 8.366, 4.493, 9.519
3.656, 9.837, 8.221, 5.129, 8.947
9.32, 9.184, 9.452, 9.072, 3.508
8.774, 3.827, 8.422, 8.501, 9.307
10.108, 4.866, 6.988, 6.716, 8.218
7.805, 8.048, 8.525, 9.196, 8.226
8.197, 6.476, 6.474, 6.93, 6.661
6.951, 7.866, 7.81, 8.669, 8.667
8.181, 8.179, 8.447, 8.768, 8.495
9.085, 9.192, 8.735, 8.145, 8.224
8.007, 8.085, 5.124, 4.451, 5.391
5.335, 9.528, 8.068, 8.227, 7.797
8.197, 8.194, 9.107, 7.838, 7.914
7.939, 8.714, 1.321, 5.378, 8.576
8.035, 6.368, 6.308, 6.331
nsp=0
p2= 500, tw= 464, go= 0
iq=0, fa=1
x(1)=
0, 0.13342, 0.26683, 0.40025, 0.53367
0.66708, 0.8005
qf(1)=
0.8, 0.68, 0.78, 0.89, 1.11
1.27, 1.85
x(8)=
0, 0.13342, 0.26683, 0.40025, 0.53367
0.66708, 0.8005
qf(8)=
1.045, 1.075, 1.05, 1.2, 0.98
0.94, 0.855
jn=7,7
jst=
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
```

$$
2,2,2,2,2
$$

$$
2,2,2,2,2
$$

$$
2,2,2,2,2
$$

$$
2,2,2,2,2
$$

$$
2,2,2,2,2
$$

$$
2,2,2,2,2
$$

$$
2,2,2,2,2
$$

$$
2,2,2,2,2
$$

$$
2,2,2,2,2
$$

$$
2,2,2,2,2
$$

$$
2,2,2,2,2
$$

$$
2,2,2,2,2
$$

$$
2,2,2,2,2
$$

$$
2,2,2,2,2
$$

$$
2,2,2,2,2
$$

$$
2,2,2,2,2
$$

$$
2,2,2,2,2
$$

$$
2,2,2,2,2
$$

$$
2,2,2,2,2
$$

$$
2,2,2,2,2
$$

$$
2,2,2,2,2
$$

$$
2,2,2,2,2
$$

$$
2,2,2,2,2
$$

$$
2,2,2,2,2
$$

$$
2,2,2,2,2
$$

$$
2,2,2,2,2
$$

$$
2,2,2,2,2
$$

$$
2,2,2,2,2
$$

$$
2,2,2,2,2
$$

$$
2,2,2,2
$$

\$end

A. 24 Arkansas Nuclear PWR Rod

DOE sponsored a program with ABB Combustion Engineering and Energy Operations, Inc. to improve the use of PWR fuel. The scope of this project was to develop more efficient fuel management concepts and an increase in the burnup of discharged fuel.

Two 16 x 16 lead test assemblies were irradiated in the Arkansas Nuclear One-Unit 2 reactor (ANO-2). This is a PWR that operates at 2815 MW thermal. One of the assemblies, D039, was irradiated for three cycles and achieved a burnup of $33 \mathrm{GWd} / \mathrm{MTU}$. The other assembly, number D040, was irradiated for five cycles and achieved a burnup of $52 \mathrm{GWd} / \mathrm{MTU}$.

Rod TSQ002 (Smith et al. 1994), irradiated in assembly D040, was of standard CE 16×16 design and contained solid UO_{2}. Assembly D040 was irradiated from 1979 to 1988 in ANO-2, cycles two through six. It accumulated $52 \mathrm{GWd} / \mathrm{MTU}$ assembly-average burnup. Rod TSQ002 accumulated an end-of-life (EOL) rod-average burnup of $56.1 \mathrm{GWd} / \mathrm{MTU}$. The rod-average LHGR varied from 2.75 to $6.95 \mathrm{~kW} / \mathrm{ft}$, with the higher values near BOL.

This rod was used to assess the FRAPCON-3.4 UO U_{2} FGR predictions, the EOL void volume predictions and the Zircaloy-4 corrosion predictions. The input files used for these assessments are shown below. The input for the EOL void volume contains one extra time step at room temperature and zero power so the room temperature void volume is calculated for comparison to the PIE measured volume.

```
ANO-2 Rods TSQ002 Case for FGR and Corrosion
* GOESINS:
FILE05='nullfile', STATUS='scratch', FORM='FORMATTED',
    CARRIAGE CONTROL='LIST'
*
* GOESOUTS:
FILE06='outTSQ002.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='plotTSQ002.n', STATUS = 'UNKNOWN', FORM = 'FORMATTED'
/*****************************************************************************
            ANO-2 Assembly D040 rod TSQ002
    $frpcn
    im = 70, na = 12, nr = 17,
    ngasr = 45,
    $end
    $frpcon
    cpl = 10.7, crdt = 0.2, crdtr = 0.0, dco = 0.382,
    thkcld = 0.025, thkgap = 0.0035,
    den = 95.0, dishsd = 0.1, dspg = 0.33,
    dspgw = 0.055, enrch = 3.48, fgpav = 380.0, hdish = 0.0135,
    hplt = 0.390, icm = 4,pitch = 0.50,
    icor = 0, idxgas = 1, iplant =-2, iq = 0, jdlpr = 0, fa = 1.0,
    jn = 25,25,25,24,24,
    totl = 12.5, roughc = 2e-5, roughf = 3e-5, vs = 8.0,
    nunits = 1, rsntr = 150., nplot = 1,
    flux(1) = 13*0.26e17, p2 = 70*2250.0,tw = 70*554.,
    go = 70*4.35e6,nsp=1,
    jst = 9*1,11*2,17*3,14*4,19*5,
    qf(1) = 0.54,0.83,1.03,1.10,1.14,1.14,1.12,1.11,1.10,1.08,1.07,
    1.06,1.06,1.06,1.05,1.05,1.06,1.07,1.07,1.07,1.06,1.00,0.93,0.73,0.46,
    x(1) = 0,0.75,1.25,1.75,2.25,2.75,3.25,3.75,4.25,4.75,5.25,5.75,
```

```
6.25,6.75,7.25,7.75,8.25,8.75,9.25,9.75,10.25,10.75,11.25,11.75,12.5,
qf(26) = 0.58,0.86,1.02,1.06,1.09,1.10,1.09,1.09,1.09,
1.08,1.08,1.07,1.07,1.07,1.07,1.06,1.06,1.06,1.06,1.05,1.04,
1.00,0.95,0.87,0.52,
x(26) = 0,0.75,1.25,1.75,2.25,2.75,3.25,3.75,4.25,4.75,5.25,5.75,
6.25,6.75,7.25,7.75,8.25,8.75,9.25,9.75,10.25,10.75,11.25,11.75,12.5,
qf(51) = 0.63,0.90,1.04,1.07,1.09,1.08,1.07,1.07,1.06,
1.05,1.04,1.04,1.04,1.04,1.03,1.04,1.04,1.04,1.05,1.05,1.04,
1.02,0.97,0.83,0.56,
x(51) = 0,0.75,1.25,1.75,2.25,2.75,3.25,3.75,4.25,4.75,5.25,5.75,
6.25,6.75,7.25,7.75,8.25,8.75,9.25,9.75,10.25,10.75,11.25,11.75,12.5,
qf(76) = 0.61,0.81,0.95,1.02,1.06,1.07,1.06,1.06,1.06,
1.05,1.06,1.06,1.06,1.07,1.08,1.08,1.10,1.11,1.13,1.12,1.07,
0.99,0.84,0.61,
x(76) = 0,0.52,0.83,1.16,1.65,2.28,2.87,3.50,4.15,
4.78,5.37,6.00,6.65,7.28,7.87,8.50,9.15,9.78,10.37,11.00,11.82,12.13,12.5,
qf(100) = 0.69,0.82,0.94,1.00,1.03,1.04,1.04,1.04,1.04,
1.05,1.05,1.05,1.05,1.06,1.06,1.07,1.08,1.09,1.09,1.09,1.06,1.01,0.88,0.75,
x(100) = 0,0.52,0.83,1.16,1.65,2.28,2.87,3.50,4.15,
4.78,5.37,6.00,6.65,7.28,7.87,8.50,9.15,9.78,10.37,11.00,11.82,12.13,12.5,
ProblemTime= 9.8,68.7,91.5,139.6,187.7,209.8,236.6,263.0,292.3,
307.2,321.0,334.7,362.2,389.7,417.0,444.4,471.7,499.0,526.2,548.7,
553.3,561.3,570.7,586.2,605.9,621.4,639.0,668.9,696.3,726.5,
756.4,786.2,813.9,843.2,886.4,905.4,919.8,
926.6,933.5,947.2,974.9,1002,1030,1057,1085,1112,1140,1168,1196,1223,1243,
1249,1256,1270,1296,1322,1350,1376,1403,1430,1456,1483,1510,1537,
1563,1590,1617,1644,1670,1697,
qmpy =3.28,4.34,4.31,4.3,4.32,4.29,4.32,4.35,2.88,
6.95,6.95,6.91,6.84,6.8,6.76,6.73,6.7,6.68,6.65,6.62,
5.95,5.95,5.76,5.78,5.86,5.87,5.81,5.79,5.77,5.75,
5.72,5.68,5.68,5.62,4.8,5.05,5.62,
4.37,4.41,4.4,4.37,4.38,4.39,4.4,4.42,4.43,4.4,4.4,4.4,4.4,4.4,
2.75,2.97,2.82,2.88,2.92,3.01,3.09,3.14,3.21,3.27,
3.33,3.39,3.46,3.52,3.59,3.66,3.69,3.82,3.89,
slim = .05,
$end
```


ANO-2 Rods TSQ002 Case for EOL Void Volume

```
* GOESINS:
```

FILE05='nullfile', STATUS='scratch', FORM='FORMATTED',
CARRIAGE CONTROL='LIST'
*

* GOESOUTS:
FILE06='outTSQ002.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='plotTSQ002.n', STATUS = 'UNKNOWN', FORM = 'FORMATTED'

ANO-2 Assembly D040 rod TSQOO2
\$frpen
im = 71, na $=12, \mathrm{nr}=17$,
ngasr $=45$,
\$end
\$frpcon
$\mathrm{cpl}=10.7, \operatorname{crdt}=0.2, \operatorname{crdtr}=0.0, \mathrm{dco}=0.382$,
thkcld $=0.025$, thkgap $=0.0035$,
den $=95.0$, dishsd $=0.1$, $d s p g=0.33$,
dspgw $=0.055$, enrch $=3.48$, fgpav $=380.0$, hdish $=0.0135$,
hplt $=0.390$, icm $=4$,pitch $=0.50$,

```
    icor = 0, idxgas = 1, iplant =-2, iq = 0, jdlpr = 0, fa = 1.0,
    jn = 25,25,25,24,24,
    totl = 12.5, roughc = 2e-5, roughf = 3e-5, vs = 8.0,
    nunits = 1, rsntr = 150., nplot = 1,
    flux(1) = 13*0.26e17, p2 = 70*2250.0,14.7,tw = 70*554.,77.0
    go = 70*4.35e6,0.0,nsp=1,
    jst = 9*1,11*2,17*3,14*4,19*5,
    qf(1) = 0.54,0.83,1.03,1.10,1.14,1.14,1.12,1.11,1.10,1.08,1.07,
    1.06,1.06,1.06,1.05,1.05,1.06,1.07,1.07,1.07,1.06,1.00,0.93,0.73,0.46,
    x(1) = 0,0.75,1.25,1.75,2.25,2.75,3.25,3.75,4.25,4.75,5.25,5.75,
    6.25,6.75,7.25,7.75,8.25,8.75,9.25,9.75,10.25,10.75,11.25,11.75,12.5,
    qf(26) = 0.58,0.86,1.02,1.06,1.09,1.10,1.09,1.09,1.09,
    1.08,1.08,1.07,1.07,1.07,1.07,1.06,1.06,1.06,1.06,1.05,1.04,
    1.00,0.95,0.87,0.52,
    x(26) = 0,0.75,1.25,1.75,2.25,2.75,3.25,3.75,4.25,4.75,5.25,5.75,
    6.25,6.75,7.25,7.75,8.25,8.75,9.25,9.75,10.25,10.75,11.25,11.75,12.5,
    qf(51) = 0.63,0.90,1.04,1.07,1.09,1.08,1.07,1.07,1.06,
    1.05,1.04,1.04,1.04,1.04,1.03,1.04,1.04,1.04,1.05,1.05,1.04,
    1.02,0.97,0.83,0.56,
    x(51) = 0,0.75,1.25,1.75,2.25,2.75,3.25,3.75,4.25,4.75,5.25,5.75,
    6.25,6.75,7.25,7.75,8.25,8.75,9.25,9.75,10.25,10.75,11.25,11.75,12.5,
    qf(76) = 0.61,0.81,0.95,1.02,1.06,1.07,1.06,1.06,1.06,
    1.05,1.06,1.06,1.06,1.07,1.08,1.08,1.10,1.11,1.13,1.12,1.07,
    0.99,0.84,0.61,
    x(76) = 0,0.52,0.83,1.16,1.65,2.28,2.87,3.50,4.15,
    .78,5.37,6.00,6.65,7.28,7.87,8.50,9.15,9.78,10.37,11.00,11.82,12.13,12.5,
    qf(100) = 0.69,0.82,0.94,1.00,1.03,1.04,1.04,1.04,1.04,
    .05,1.05,1.05,1.05,1.06,1.06,1.07,1.08,1.09,1.09,1.09,1.06,1.01,0.88,0.75,
    x(100) = 0,0.52,0.83,1.16,1.65,2.28,2.87,3.50,4.15,
    .78,5.37,6.00,6.65,7.28,7.87,8.50,9.15,9.78,10.37,11.00,11.82,12.13,12.5,
    ProblemTime= 9.8,68.7,91.5,139.6,187.7,209.8,236.6,263.0,292.3,
    307.2,321.0,334.7,362.2,389.7,417.0,444.4,471.7,499.0,526.2,548.7,
    553.3,561.3,570.7,586.2,605.9,621.4,639.0,668.9,696.3,726.5,
    756.4,786.2,813.9,843.2,886.4,905.4,919.8,
926.6,933.5,947.2,974.9,1002,1030,1057,1085,1112,1140,1168,1196,1223,1243,
    1249,1256,1270,1296,1322,1350,1376,1403,1430,1456,1483,1510,1537,
    1563,1590,1617,1644,1670,1697,1698
    qmpy =3.28,4.34,4.31,4.3,4.32,4.29,4.32,4.35,2.88,
    6.95,6.95,6.91,6.84,6.8,6.76,6.73,6.7,6.68,6.65,6.62,
    5.95,5.95,5.76,5.78,5.86,5.87,5.81,5.79,5.77,5.75,
    5.72,5.68,5.68,5.62,4.8,5.05,5.62,
    4.37,4.41,4.4,4.37,4.38,4.39,4.4,4.42,4.43,4.4,4.4,4.4,4.4,4.4,
    2.75,2.97,2.82,2.88,2.92,3.01,3.09,3.14,3.21,3.27,
    3.33,3.39,3.46,3.52,3.59,3.66,3.69,3.82,3.89,0.0
    slim = .05,
    $end
```


A. 25 Oconee PWR Rod

DOE sponsored a long-term, multi-organizational program on the performance of light-water reactor (LWR) fuel rods during operation to extend burnups. As part of that program, Babcock and Wilcox (B\&W) 15×15-type PWR fuel assemblies were irradiated to 3,4 , and 5 cycles in the Oconee PWR, operated by Duke Power Company. One assembly, 1D45, completed five cycles of irradiation in June 1983, having achieved an assembly average burnup of $50 \mathrm{GWd} / \mathrm{MTU}$ during 1553 effective full-power days.

Several rods from the assembly were nondestructively and destructively examined in the B\&W hot cells. This document summarizes the design and operating parameters for one rod, number 15309 (Newman 1986). Fuel density and microstructure, rod growth, cladding oxidation/hydriding, and diametral strain data are available for this rod together with FGR measurement via rod puncture and plenum gas analysis. The FGR for this low-powered rod was <1 percent; but the cladding oxidation, growth, and diametral strain were significant.

The rods were standard 15×15 full-length PWR rods. The rod initially had a rod-average LHGR of 7 to $8 \mathrm{~kW} / \mathrm{ft}$; however, this decreased to $\sim 4 \mathrm{~kW} / \mathrm{ft}$ by EOL. The axial power profile flattened early and remained relatively flat throughout life.

This rod was used to assess the FRAPCON-3.4 UO ${ }_{2}$ FGR predictions, the EOL void volume predictions and the Zircaloy- 4 corrosion predictions. The input files used for these assessments are shown below. The input for the EOL void volume contains one extra time step at room temperature and zero power so the room temperature volid volume is calculated for comparison to the PIE measured volume.

Oconee Rods 15309 Case for FGR and Corrosion

```
* GOESINS:
FILE05='nullfile', STATUS='scratch', FORM='FORMATTED',
    CARRIAGE CONTROL='LIST'
*
* GOESOUTS:
FILE06='Out15309.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='plot15309.out', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
/*************************************************************************
    Oconee rod 15309
$frpcn
im=34, na=12,
ngasr = 45,
$end
$frpcon
cpl = 10.5, crdt = 0.2, crdtr = 0.0, thkcld = 0.0265,
dco = 0.430, pitch = 0.56,
den = 95., thkgap=0.0050, dishsd = 0.050,dspg = 0.37,
dspgw = 0.055, enrch = 3., fa= 1.0, fgpav = 480,
hplt = 0.70, hdish = 0.014, icm = 4,
icor = 0, idxgas = 1, iplant =-2, iq = 0, jdlpr = 0,
totl = 11.75, jn = 13,13,13,13,13, jst = 7*1,10*2, 2* 3,5*4,10*5
rc = 0.0, roughc = 1.97e-5, nplot = 1,
roughf = 2.36e-5, vs = 20.0,
nunits = 1, rsntr = 150.,
qf(1)=0.2,1.0,1.2,1.25,1.25,1.22,1.2,1.16,1.14,1.06,.78,.3,.15,
```

```
qf(14)=0.2,1.08,1.18,1.12,1.04,0.97,0.97,1.00,1.03,1.05,1.10,0.97,0.2,
qf(27) =0.2,0.82,1.02,1.11,1.13,1.08,1.04,1.05,1.14,1.19,1.13,0.9,0.2,
qf(40)=0.2,0.95,1.05,1.03,1.03,1.08,1.12,1.12,1.1,1.05,1.0,0.81,0.4,
qf(53)=0.45,0.94,1.02,1.05,1.07,1.10,1.12,1.11,1.10,1.06,1.02,0.95,0.5
x(1) =0,1,2,3,4,5,6,7,8,9,10,11,11.75
x(14)=0,1,2,3,4,5,6,7,8,9,10,11,11.75
x(27) =0,1,2,3,4,5,6,7,8,9,10,11,11.75
x(40) =0,1,2,3,4,5,6,7,8,9,10,11,11.75
x(53)=0,1,2,3,4,5,6,7,8,9,10,11,11.75
flux = 13*0.25e17, p2(1) = 2200.0, tw(1) = 555.0, go(1) = 2.6e6,
ProblemTime= 0.1,65,125,185,210,235,295,
325,350,360,370,500,510,535,540,560,600,
615,850,
890,905, 920,1130,1150,
1160,1205,1220,1240,1400,1445,1490,1510,1535,1550,
qmpy = 5.8,5.8,7.9,7.5,7.3,6.8,6.6,
7.9,7.6,7.4,6.9,6.6,6.1,6.7,6.0,6.6,6.1,
4.1, 5.4,
5.1,4.7,5.4,5.0,4.5,
4.3,4.4,4.3,4.4,4.5,4.55,4.6,4.65,4.7,3.6,
slim = .05,
$end
```


Oconee rods 15309 Case for EOL Void Volume

* GOESINS:

FILE05='nullfile', STATUS='scratch', FORM='FORMATTED', CARRIAGE CONTROL='LIST'
\star

* GOESOUTS:

FILE06='out15309.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='plot15309.out', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'

```
/********************************************************************************
        Oconee rod 15309
    $frpcn
    im=35, na=12,
    ngasr = 45,
    $end
    $frpcon
    cpl = 10.5, crdt = 0.2, crdtr = 0.0, thkcld = 0.0265,
    dco = 0.430, pitch = 0.56,
    den = 95., thkgap=0.0050, dishsd = 0.050,dspg = 0.37,
    dspgw = 0.055, enrch = 3., fa= 1.0, fgpav = 480,
    hplt = 0.70, hdish = 0.014, icm = 4,
    icor = 0, idxgas = 1, iplant =-2, iq = 0, jdlpr = 0,
    totl = 11.75, jn = 13,13,13,13,13, jst = 7*1,10*2,2*3,5*4,10*5,10
    rc = 0.0, roughc = 1.97e-5, nplot = 1,
    roughf = 2.36e-5, vs = 20.0,
    nunits = 1, rsntr = 150.,
    qf(1)=0.2,1.0,1.2,1.25,1.25,1.22,1.2,1.16,1.14,1.06,.78,.3,.15,
    qf(14)=0.2,1.08,1.18,1.12,1.04,0.97,0.97,1.00,1.03,1.05,1.10,0.97,0.2,
    qf(27) =0.2,0.82,1.02,1.11,1.13,1.08,1.04,1.05,1.14,1.19,1.13,0.9,0.2,
    qf(40)=0.2,0.95,1.05,1.03,1.03,1.08,1.12,1.12,1.1,1.05,1.0,0.81,0.4,
    qf(53)=0.45,0.94,1.02,1.05,1.07,1.10,1.12,1.11,1.10,1.06,1.02,0.95,0.5
    x(1) =0,1,2,3,4,5,6,7,8,9,10,11,11.75
    x(14) =0,1,2,3,4,5,6,7,8,9,10,11,11.75
    x(27) =0,1,2,3,4,5,6,7,8,9,10,11,11.75
```

```
x(40)=0,1,2,3,4,5,6,7,8,9,10,11,11.75
x(53)=0,1,2,3,4,5,6,7,8,9,10,11,11.75
nsp=1
flux = 13*0.25e17, p2(1) = 34*2200.0,14.7, tw(1) = 34*555.0,77
go(1) = 34*2.6e6,,0.0
ProblemTime= 0.1,65,125,185,210,235,295,
325,350,360,370,500,510,535,540,560,600,
615,850,
890,905, 920,1130,1150,
1160,1205,1220,1240,1400,1445,1490,1510,1535,1550,1551
qmpy = 5.8,5.8,7.9,7.5,7.3,6.8,6.6,
7.9,7.6,7.4,6.9,6.6,6.1,6.7,6.0,6.6,6.1,
4.1, 5.4,
5.1,4.7,5.4,5.0,4.5,
4.3,4.4,4.3,4.4,4.5,4.55,4.6,4.65,4.7,3.6,0.0
slim = .05,
$end
```


A. 26 Halden IFA-651 Rods

The IFA-651.1 rig (Blair and Wright 2004) contained six fuel rod segments. Three of these rod segments contained inert matrix fuel and three rod segments contained MOX fuel. The MOX rods (rods 1,3 , and 6) were modeled with FRAPCON-3.4. Rod 1 MOX fuel was fabricated using an SBR that results in a relatively homogenous distribution of the PuO_{2} compared to MOX fabricated using the MIMAS process. Rods 3 and 6 were fabricated at Paul Scherrer Institute using a two-stage attrition milling process developed by the Korean Atomic Energy Research Institute. Micrographs provided appear to demonstrate that this process provides a homogenous distribution of PuO_{2} similar to that observed in the SBR process.

These rods were irradiated for four cycles in the Halden reactor to a rod-average burnup between 20 and $23 \mathrm{GWd} /$ MTM. PIE showed that the fuel in rods 1 and 6 had an in-reactor densification of 2 percent, while the fuel in rod 3 had an in-reactor densification of 1 percent. These values have been entered into the code as input parameters. The measured gas release values used for model verification have been estimated from pressure measurements and are subject to greater uncertainty than measurements made by rod puncture.

These three rods were used to assess the FRAPCON-3.4 temperature predictions for MOX as a function of burnup and the MOX FGR predictions. The input files used for the MOX temperature and FGR assessments are shown below. Input files that include the central hole were used for the temperature assessment since the temperature was measured on hollow pellets. Input files that do not include the central hole were used for the FGR assessment since most of the fuel column consists of solid pellets.

IFA-651 Rod 1 Temperature Case

```
* GOESINS:
FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
    CARRIAGE CONTROL='NONE'
*
* GOESOUTS:
FILE06='ifa-651-1r1tc.out',
            STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='ifa-651-1r1tc.plot',
            STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'
/***************************************************************************
IFA-651 Rod 1 Temperature Case
    $frpcn
    im=92, nr=17, ngasr=45, na=9
    $end
    $frpcon
    dco=0.3741, thkcld=0.02254, thkgap=0.00311, totl=1.63615, cpl=5.1969
    dspg=0.315, dspgw=0.0394, vs=10
    hplt=0.4764, rc=0.0354, hdish=0.0075, dishsd=0.0354
    enrch=0.225, imox=1, comp=8.18
    fotmtl=1.996, gadoln=0, ppmh2o=0, ppmn2=0
    den=94.6, deng=0, roughf=0.0000787, rsntr=220, tsint=2911
    icm=4, cldwks=0.5, roughc=0.0000197, catexf=0.05, chorg=10
    fgpav=145.04, idxgas=1
iplant=-4, pitch=0.3937, icor=0, crdt=0, crdtr=0, flux=10*5000000000000000
    crephr=10, sgapf=31, slim=0.05, qend=0.3
    jdlpr=1, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
    ProblemTime=
    1.8, 4.2, 10.4, 11.9, 55.1
```

```
89.6, 103.9, 105.1, 106.3, 110.8
111.8, 113.6, 114.8, 115.3, 116.3
119.2, 120.2, 121.1, 122, 124.3
124.8, 127, 127.7, 129.7, 130.6
131.1, 132.8, 133.4, 135, 136.5
138.7, 141.1, 145.8, 147, 149.7
150.6, 152.6, 153.8, 167, 173.6
174.1, 179.6, 183.3, 186.7, 187.2
187.9, 196.2, 196.7, 206.3, 208.1
209.9, 210.4, 212.3, 221, 222.8
226.7, 234.2, 238.6, 239.1, 247.2
247.7, 249.4, 253.7, 256.7, 264.8
268.5, 271.9, 280.1, 283.5, 288.6
291.8, 300.6, 312.8, 321.6, 323.9
325.3, 345.7, 347.2, 349.1, 350.5
351.9, 353.1, 367, 369, 384.9
393.8,404.8,406.5,430.4,446.9
481.8, 484.4
qmpy=
2.743, 4.572, 5.304, 5.639, 7.651
7.559, 7.163, 1.829, 4.145, 6.706
2.896, 0.975, 1.067, 1.25, 4.115
7.986, 3.353, 1.981, 3.597, 8.23
3.81, 7.681, 4.206, 8.047, 1.798
3.962, 8.077, 2.286, 3.048, 5.334
2.682, 8.047, 7.559, 3.322, 5.029
2.499, 4.694, 0.823, 5.669, 6.005
3.2, 6.645, 6.675, 5.029, 6.309
3.079, 6.828, 3.627, 6.584, 6.462
4.907, 6.553, 7.01, 6.95, 6.797
6.95, 6.37, 6.706, 5.913, 6.736
3.383, 0.853, 3.871, 3.292, 6.98
4.755, 3.871, 3.17, 8.687, 9.906
3.444, 6.828, 7.102, 6.157, 3.079
3.048, 5.456, 2.743, 2.621, 2.621
1.524, 5.09, 10.028, 8.382, 8.108
7.468, 8.291, 4.206, 8.382, 8.656
8.352, 4.023
nsp=0
p2=493.13, tw= 455, go= 0
iq=0, fa=1
x(1)=
0, 0.16404, 0.32808, 0.49213, 0.65617
0.82021, 0.98425, 1.14829, 1.31234, 1.47638
1.63615
qf(1)=
102.6, 104.2, 104.9, 105.1, 104.6
103.2, 100.8, 96.8, 92.6, 88.8
    85
x(12)=
0, 0.16404, 0.32808, 0.49213, 0.65617
0.82021, 0.98425, 1.14829, 1.31234, 1.47638
1.63615
qf(12)=
88.6, 91.4, 94.6, 97.4, 99.3
100.8, 101.5, 101.3, 100.5, 99.6
    98.4
```

A. 112

```
x(23) =
0, 0.16404, 0.32808, 0.49213, 0.65617
0.82021, 0.98425, 1.14829, 1.31234, 1.47638
1.63615
qf(23)=
97.9, 100, 100.8, 101.5, 101.5
101.3, 100.2, 99, 97.4, 96.4
    94
x(34)=
0, 0.16404, 0.32808, 0.49213, 0.65617
0.82021, 0.98425, 1.14829, 1.31234, 1.47638
1.63615
qf(34)=
137.7, 140, 141.6, 142.7, 142.3
141.6, 140.6, 138.7, 136, 133.7
    130.6
jn=11,11,11,11
jst=
1, 1, 1, 1, 1
1, 1, 1, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 3, 3, 3, 3
3, 3, 3, 3, 3
3, 3, 3, 3, 3
3, 3, 3, 4, 4
4, 4, 4, 4, 4
4, 4, 4, 4, 4
4, 4
$end
$frpmox
enrpu39=65.99, enrpu40=23.45, enrpu41=7.08, enrpu42=3.48
$end
```


IFA-651 Rod 3 Temperature Case

```
* GOESINS:
FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
    CARRIAGE CONTROL='NONE'
*
* GOESOUTS:
FILE06='ifa-651-1r3tc.out',
    STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='ifa-651-1r3tc.plot',
                STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'
/***********************************************************************
IFA-651 rod 3 Temperature Case
    $frpcn
    im=92, nr=17, ngasr=45, na=9
    $end
```

\$frpcon
dco=0.3743, thkcld=0.0228, thkgap=0.00311, totl=1.64206, cpl=5.1181
dspg=0.315, dspgw=0.0394, vs=10
hplt=0.3858, rc=0.0394, hdish=0.0094, dishsd=0.0638
enrch=0.225, imox=1, comp=8.01
fotmtl=1.996, gadoln=0, ppmh2o=0, ppmn2=0
den $=94.6$, deng=0, roughf $=0.0000787$, rsntr=110, tsint=2911
icm=4, cldwks=0.5, roughc=0.0000197, catexf=0.05, chorg=10
fgpav=145.04, idxgas=1

```
iplant=-4, pitch=0.3937, icor=0, crdt=0, crdtr=0, flux=10*5000000000000000
crephr=10, sgapf=31, slim=0.05, qend=0.3
jdlpr=1, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
ProblemTime=
1.8, 4.2, 10.4, 11.9, 55.1
89.6, 103.9, 105.1, 106.3, 110.8
111.8, 113.6, 114.8, 115.3, 116.3
119.2, 120.2, 121.1, 122, 124.3
124.8, 127, 127.7, 129.7, 130.6
131.1, 132.8, 133.4, 135, 136.5
138.7, 141.1, 145.8, 147, 149.7
150.6, 152.6, 153.8, 167, 173.6
174.1, 179.6, 183.3, 186.7, 187.2
187.9, 196.2, 196.7, 206.3, 208.1
209.9, 210.4, 212.3, 221, 222.8
226.7, 234.2, 238.6, 239.1, 247.2
247.7, 249.4, 253.7, 256.7, 264.8
268.5, 271.9, 280.1, 283.5, 288.6
291.8, 300.6, 312.8, 321.6, 323.9
325.3, 345.7, 347.2, 349.1, 350.5
351.9, 353.1, 367, 369, 384.9
393.8, 404.8, 406.5, 430.4, 446.9
481.8, 484.4
qmpy=
2.438, 4.206, 4.877, 5.029, 6.828
6.675, 6.431, 1.737, 4.267, 6.858
3.048, 1.067, 1.189, 1.372, 4.267
8.23, 3.505, 2.134, 3.841, 8.535
4.267, 7.925, 4.359, 8.382, 1.89
4.115, 8.291, 2.438, 3.353, 5.547
2.804, 8.382, 7.864, 3.475, 5.243
2.591, 4.877, 0.914, 5.669, 6.005
3.2, 6.736, 6.767, 5.334, 6.431
3.2, 7.01, 3.719, 6.675, 6.614
4.999, 6.858, 7.071, 7.01, 6.889
7.01, 6.462, 6.889, 6.005, 6.889
3.444, 0.945, 4.145, 3.383, 6.98
4.968, 3.932, 3.292, 8.9, 10.119
3.627, 7.041, 7.224, 6.37, 3.2
3.2, 5.639, 2.835, 2.743, 2.317
1.737, 4.542, 8.961, 7.772, 7.62
7.132, 7.864, 3.993, 8.077, 8.321
8.047, 3.901
nsp=0
p2=493.13, tw= 455, go= 0
iq=0, fa=1
```

```
x(1)=
0, 0.16404, 0.32808, 0.49213, 0.65617
0.82021, 0.98425, 1.14829, 1.31234, 1.47638
1.64206
qf(1)=
102.6, 104.2, 104.9, 105.1, 104.6
103.2, 100.8, 96.8, 92.6, 88.8
    85
x(12)=
0, 0.16404, 0.32808, 0.49213, 0.65617
0.82021, 0.98425, 1.14829, 1.31234, 1.47638
1.64206
qf(12) =
88.6, 91.4, 94.6, 97.4, 99.3
100.8, 101.5, 101.3, 100.5, 99.6
            98.4
x(23)=
0, 0.16404, 0.32808, 0.49213, 0.65617
0.82021, 0.98425, 1.14829, 1.31234, 1.47638
1.64206
qf(23)=
97.9, 100, 100.8, 101.5, 101.5
101.3, 100.2, 99, 97.4, 96.4
    94
x(34)=
0, 0.16404, 0.32808, 0.49213, 0.65617
0.82021, 0.98425, 1.14829, 1.31234, 1.47638
1.64206
qf(34)=
137.7, 140, 141.6, 142.7, 142.3
141.6, 140.6, 138.7, 136, 133.7
    130.6
jn=11,11,11,11
jst=
1, 1, 1, 1, 1
1, 1, 1, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 3, 3, 3, 3
3, 3, 3, 3, 3
3, 3, 3, 3, 3
3, 3, 3, 4, 4
4, 4, 4, 4, 4
4, 4, 4, 4, 4
4, 4
$end
$frpmox
enrpu39=65.99, enrpu40=23.45, enrpu41=7.08, enrpu42=3.48
$end
```


IFA-651 Rod 6 Temperature Case

* GOESINS:

FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED', CARRIAGE CONTROL='NONE'
*

* GOESOUTS:

FILE06='ifa-651-1r6tc.out', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='ifa-651-1r6tc.plot', STATUS = 'UNKNOWN', FORM='FORMATTED', CARRIAGE CONTROL='LIST'
$/ * ~+~$
IFA-651 rod 6 Temperature Case \$frpcn
im=92, nr=17, ngasr=45, na=9
\$end
\$frpcon
$\mathrm{dco}=0.3743$, thkcld=0.0227, thkgap=0.00319, totl=1.64206, cpl=5.2362
$\mathrm{dspg}=0.315, \mathrm{dspgw}=0.0394, \quad v s=10$
$h p l t=0.3858$, rc=0.0354, hdish=0.0094, dishsd=0.0638
enrch=0.255, imox=1, comp=8.01
fotmtl=1.996, gadoln=0, ppmh2o=0, ppmn2=0
den=94.9, deng=0, roughf=0.0000787, rsntr=220, tsint=2911
icm $=4$, cldwks=0.5, roughc=0.0000197, catexf=0.05, chorg=10
fgpav=145.04, idxgas=1
iplant $=-4$, pitch=0.3937, icor=0, crdt=0, crdtr=0, flux=10*5000000000000000
crephr=10, sgapf=31, slim=0.05, qend=0.3
jdlpr=1, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
ProblemTime=
$1.8,4.2$, 10.4, 11.9, 55.1
89.6, 103.9, 105.1, 106.3, 110.8
111.8, 113.6, 114.8, 115.3, 116.3
$119.2,120.2,121.1,122,124.3$
124.8, 127, 127.7, 129.7, 130.6
131.1, 132.8, 133.4, 135, 136.5
138.7, 141.1, 145.8, 147, 149.7
150.6, 152.6, 153.8, 167, 173.6
174.1, 179.6, 183.3, 186.7, 187.2
187.9, 196.2, 196.7, 206.3, 208.1
209.9, 210.4, 212.3, 221, 222.8
226.7, 234.2, 238.6, 239.1, 247.2
247.7, 249.4, 253.7, 256.7, 264.8
268.5, 271.9, 280.1, 283.5, 288.6
291.8, 300.6, 312.8, 321.6, 323.9
$325.3,345.7,347.2,349.1,350.5$
$351.9,353.1,367,369,384.9$
$393.8,404.8,406.5,430.4,446.9$
481.8, 484.4
qmpy=
$2.591,4.42,5.182,5.395,7.437$
$7.315,6.95,1.585,3.962,6.309$
$2.743,0.823,0.914,1.067,3.841$
$7.376,2.896,1.585,3.231,7.62$
$3.658,7.254,3.688,7.559,1.676$
$3.719,7.62,1.524,2.743,4.877$
$2.469,7.559,7.01,2.804,4.45$

```
1.981, 3.962, 0.61, 4.724, 5.212
2.713, 5.517, 5.517, 4.267, 5.212
2.469, 5.608, 2.926, 5.578, 5.426
4.115, 5.883, 6.035, 5.913, 5.73
5.944, 5.395, 5.73, 4.816, 5.791
2.896, 0.64, 3.17, 3.17, 6.34
4.054, 3.383, 2.896, 7.285, 8.291
3.048, 5.822, 6.157, 5.334, 2.682
5.395, 4.633, 2.317, 2.286, 1.829
1.219, 4.389, 8.656, 7.559, 7.559
6.95, 7.59, 3.81, 7.712, 7.894
7.681, 3.78
nsp=0
p2=493.13, tw= 455, go= 0
iq=0, fa=1
x(1)=
0, 0.16404, 0.32808, 0.49213, 0.65617
0.82021, 0.98425, 1.14829, 1.31234, 1.47638
1.64206
qf(1)=
102.6, 104.2, 104.9, 105.1, 104.6
103.2, 100.8, 96.8, 92.6, 88.8
    85
x(12)=
0, 0.16404, 0.32808, 0.49213, 0.65617
0.82021, 0.98425, 1.14829, 1.31234, 1.47638
1.64206
qf(12)=
88.6, 91.4, 94.6, 97.4, 99.3
100.8, 101.5, 101.3, 100.5, 99.6
    98.4
x(23)=
0, 0.16404, 0.32808, 0.49213, 0.65617
0.82021, 0.98425, 1.14829, 1.31234, 1.47638
1.64206
qf(23)=
97.9, 100, 100.8, 101.5, 101.5
101.3, 100.2, 99, 97.4, 96.4
    94
x(34)=
0, 0.16404, 0.32808, 0.49213, 0.65617
0.82021, 0.98425, 1.14829, 1.31234, 1.47638
1.64206
qf(34)=
137.7, 140, 141.6, 142.7, 142.3
141.6, 140.6, 138.7, 136, 133.7
    130.6
jn=11,11,11,11
jst=
1, 1, 1, 1, 1
1, 1, 1, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
```

```
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 3, 3, 3, 3
3, 3, 3, 3, 3
3, 3, 3, 3, 3
3, 3, 3, 4, 4
4, 4, 4, 4, 4
4, 4, 4, 4, 4
4, 4
$end
$frpmox
enrpu39=65.99, enrpu40=23.45, enrpu41=7.08, enrpu42=3.48
$end
```


IFA-651 Rod 1 FGR Case

```
GOESINS:
FILEO5='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
    CARRIAGE CONTROL='NONE'
*
* GOESOUTS:
FILE06='ifa-651-1r1.out',
        STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='ifa-651-1r1.plot',
    STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'
/*************************************************************************
IFA-651 rod 1 FGR case
    $frpcn
    im=92, nr=17, ngasr=45, na=9
    $end
    $frpcon
    dco=0.3741, thkcld=0.02254, thkgap=0.00311, totl=1.63615, cpl=5.1969
    dspg=0.315, dspgw=0.0394, vs=10
    hplt=0.4764, rc=0, hdish=0.0075, dishsd=0.0354
    enrch=0.225, imox=1, comp=8.18
    fotmtl=1.996, gadoln=0, ppmh2o=0, ppmn2=0
    den=94.6, deng=0, roughf=0.0000787, rsntr=220, tsint=2911
    icm=4, cldwks=0.5, roughc=0.0000197, catexf=0.05, chorg=10
    fgpav=145.04, idxgas=1
    iplant=-4, pitch=0.3937, icor=0, crdt=0, crdtr=0, flux=10*50000000000000000
    crephr=10, sgapf=31, slim=0.05, qend=0.3
    jdlpr=1, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
    ProblemTime=
    1.8, 4.2, 10.4, 11.9, 55.1
    89.6, 103.9, 105.1, 106.3, 110.8
    111.8, 113.6, 114.8, 115.3, 116.3
    119.2, 120.2, 121.1, 122, 124.3
    124.8, 127, 127.7, 129.7, 130.6
    131.1, 132.8, 133.4, 135, 136.5
    138.7, 141.1, 145.8, 147, 149.7
    150.6, 152.6, 153.8, 167, 173.6
    174.1, 179.6, 183.3, 186.7, 187.2
    187.9, 196.2, 196.7, 206.3, 208.1
    209.9, 210.4, 212.3, 221, 222.8
    226.7, 234.2, 238.6, 239.1, 247.2
    247.7, 249.4, 253.7, 256.7, 264.8
```

```
268.5, 271.9, 280.1, 283.5, 288.6
291.8, 300.6, 312.8, 321.6, 323.9
325.3, 345.7, 347.2, 349.1, 350.5
351.9, 353.1, 367, 369, 384.9
393.8, 404.8, 406.5, 430.4, 446.9
481.8, 484.4
qmpy=
2.743,4.572, 5.304, 5.639, 7.651
7.559, 7.163, 1.829, 4.145, 6.706
2.896, 0.975, 1.067, 1.25, 4.115
7.986, 3.353, 1.981, 3.597, 8.23
3.81, 7.681, 4.206, 8.047, 1.798
3.962, 8.077, 2.286, 3.048, 5.334
2.682, 8.047, 7.559, 3.322, 5.029
2.499, 4.694, 0.823, 5.669, 6.005
3.2, 6.645, 6.675, 5.029, 6.309
3.079, 6.828, 3.627, 6.584, 6.462
4.907, 6.553, 7.01, 6.95, 6.797
6.95, 6.37, 6.706, 5.913, 6.736
3.383, 0.853, 3.871, 3.292, 6.98
4.755, 3.871, 3.17, 8.687, 9.906
3.444, 6.828, 7.102, 6.157, 3.079
3.048, 5.456, 2.743, 2.621, 2.621
1.524, 5.09, 10.028, 8.382, 8.108
7.468, 8.291, 4.206, 8.382, 8.656
8.352, 4.023
nsp=0
p2= 493.13, tw= 455, go= 0
iq=0, fa=1
x(1)=
0, 0.16404, 0.32808, 0.49213, 0.65617
0.82021, 0.98425, 1.14829, 1.31234, 1.47638
1.63615
qf(1)=
102.6, 104.2, 104.9, 105.1, 104.6
103.2, 100.8, 96.8, 92.6, 88.8
    85
x(12)=
0, 0.16404, 0.32808, 0.49213, 0.65617
0.82021, 0.98425, 1.14829, 1.31234, 1.47638
1.63615
qf(12)=
88.6, 91.4, 94.6, 97.4, 99.3
100.8, 101.5, 101.3, 100.5, 99.6
        98.4
x(23)=
0, 0.16404, 0.32808, 0.49213, 0.65617
0.82021, 0.98425, 1.14829, 1.31234, 1.47638
1.63615
qf(23)=
97.9, 100, 100.8, 101.5, 101.5
101.3, 100.2, 99, 97.4, 96.4
    94
x(34)=
0, 0.16404, 0.32808, 0.49213, 0.65617
0.82021, 0.98425, 1.14829, 1.31234, 1.47638
1.63615
```

```
qf(34)=
137.7, 140, 141.6, 142.7, 142.3
141.6, 140.6, 138.7, 136, 133.7
    130.6
jn=11,11,11,11
jst=
1, 1, 1, 1, 1
1, 1, 1, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 3, 3, 3, 3
3, 3, 3, 3, 3
3, 3, 3, 3, 3
3, 3, 3, 4, 4
4, 4, 4, 4, 4
4, 4, 4, 4, 4
4, 4
$end
$frpmox
enrpu39=65.99, enrpu40=23.45, enrpu41=7.08, enrpu42=3.48
$end
```


IFA-651 Rod 3 FGR Case

* GOESINS:

```
FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
    CARRIAGE CONTROL='NONE'
*
* GOESOUTS :
FILE06='ifa-651-1r3.out',
    STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='ifa-651-1r3.plot',
        STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'
/***********************************************************************
IFA-651 rod 3 FGR case
    $frpon
    im=92, nr=17, ngasr=45, na=9
    $end
    $frpcon
    dco=0.3743, thkcld=0.0228, thkgap=0.00311, totl=1.64206, cpl=5.1181
    dspg=0.315, dspgw=0.0394, vs=10
    hplt=0.3858, rc=0.0, hdish=0.0094, dishsd=0.0638
    enrch=0.225, imox=1, comp=8.01
    fotmtl=1.996, gadoln=0, ppmh2o=0, ppmn2=0
    den=94.6, deng=0, roughf=0.0000787, rsntr=110, tsint=2911
    icm=4, cldwks=0.5, roughc=0.0000197, catexf=0.05, chorg=10
    fgpav=145.04, idxgas=1
iplant=-4, pitch=0.3937, icor=0, crdt=0, crdtr=0, flux=10*50000000000000000
    crephr=10, sgapf=31, slim=0.05, qend=0.3
```

```
jdlpr=1, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
ProblemTime=
1.8, 4.2, 10.4, 11.9, 55.1
89.6, 103.9, 105.1, 106.3, 110.8
111.8, 113.6, 114.8, 115.3, 116.3
119.2, 120.2, 121.1, 122, 124.3
124.8, 127, 127.7, 129.7, 130.6
131.1, 132.8, 133.4, 135, 136.5
138.7, 141.1, 145.8, 147, 149.7
150.6, 152.6, 153.8, 167, 173.6
174.1, 179.6, 183.3, 186.7, 187.2
187.9, 196.2, 196.7, 206.3, 208.1
209.9, 210.4, 212.3, 221, 222.8
226.7, 234.2, 238.6, 239.1, 247.2
247.7, 249.4, 253.7, 256.7, 264.8
268.5, 271.9, 280.1, 283.5, 288.6
291.8, 300.6, 312.8, 321.6, 323.9
325.3, 345.7, 347.2, 349.1, 350.5
351.9, 353.1, 367, 369, 384.9
393.8, 404.8, 406.5, 430.4, 446.9
481.8, 484.4
qmpy=
2.438, 4.206, 4.877, 5.029, 6.828
6.675, 6.431, 1.737, 4.267, 6.858
3.048, 1.067, 1.189, 1.372, 4.267
8.23, 3.505, 2.134, 3.841, 8.535
4.267, 7.925, 4.359, 8.382, 1.89
4.115, 8.291, 2.438, 3.353, 5.547
2.804, 8.382, 7.864, 3.475, 5.243
2.591, 4.877, 0.914, 5.669, 6.005
3.2, 6.736, 6.767, 5.334, 6.431
3.2, 7.01, 3.719, 6.675, 6.614
4.999, 6.858, 7.071, 7.01, 6.889
7.01,6.462,6.889, 6.005,6.889
3.444, 0.945, 4.145, 3.383, 6.98
4.968, 3.932, 3.292, 8.9, 10.119
3.627, 7.041, 7.224, 6.37, 3.2
3.2, 5.639, 2.835, 2.743, 2.317
1.737, 4.542, 8.961, 7.772, 7.62
7.132, 7.864, 3.993, 8.077, 8.321
8.047, 3.901
nsp=0
p2=493.13, tw= 455, go= 0
iq=0, fa=1
x(1)=
0, 0.16404, 0.32808, 0.49213, 0.65617
0.82021, 0.98425, 1.14829, 1.31234, 1.47638
1.64206
qf(1)=
102.6, 104.2, 104.9, 105.1, 104.6
103.2, 100.8, 96.8, 92.6, 88.8
    85
x(12)=
0, 0.16404, 0.32808, 0.49213, 0.65617
0.82021, 0.98425, 1.14829, 1.31234, 1.47638
1.64206
qf(12)=
```

```
88.6, 91.4, 94.6, 97.4, 99.3
100.8, 101.5, 101.3, 100.5, 99.6
    98.4
x(23)=
0, 0.16404, 0.32808, 0.49213, 0.65617
0.82021, 0.98425, 1.14829, 1.31234, 1.47638
1.64206
qf(23)=
97.9, 100, 100.8, 101.5, 101.5
101.3, 100.2, 99, 97.4, 96.4
    94
x(34)=
0, 0.16404, 0.32808, 0.49213, 0.65617
0.82021, 0.98425, 1.14829, 1.31234, 1.47638
1.64206
qf(34)=
137.7, 140, 141.6, 142.7, 142.3
141.6, 140.6, 138.7, 136, 133.7
    130.6
jn=11,11,11,11
jst=
1, 1, 1, 1, 1
1, 1, 1, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 3, 3, 3, 3
3, 3, 3, 3, 3
3, 3, 3, 3, 3
3, 3, 3, 4, 4
4, 4, 4, 4, 4
4, 4, 4, 4, 4
4, 4
$end
$frpmox
enrpu39=65.99, enrpu40=23.45, enrpu41=7.08, enrpu42=3.48
$end
```


IFA-651 Rod 6 FGR Case

* GOESINS:

```
FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
    CARRIAGE CONTROL='NONE'
*
* GOESOUTS:
FILE06='ifa-651-1r6.out',
    STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='ifa-651-1r6.plot',
    STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'
/*************************************************************************
```

```
IFA-651 rod 6 FGR case
    $frpcn
    im=92, nr=17, ngasr=45, na=9
    $end
    $frpcon
    dco=0.3743, thkcld=0.0227, thkgap=0.00319, totl=1.64206, cpl=5.2362
    dspg=0.315, dspgw=0.0394, vs=10
    hplt=0.3858, rc=0, hdish=0.0094, dishsd=0.0638
    enrch=0.255, imox=1, comp=8.01
    fotmtl=1.996, gadoln=0, ppmh2o=0, ppmn2=0
    den=94.9, deng=0, roughf=0.0000787, rsntr=220, tsint=2911
    icm=4, cldwks=0.5, roughc=0.0000197, catexf=0.05, chorg=10
    fgpav=145.04, idxgas=1
iplant=-4, pitch=0.3937, icor=0, crdt=0, crdtr=0, flux=10*5000000000000000
    crephr=10, sgapf=31, slim=0.05, qend=0.3
    jdlpr=1, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
    ProblemTime=
    1.8, 4.2, 10.4, 11.9, 55.1
    89.6, 103.9, 105.1, 106.3, 110.8
    111.8, 113.6, 114.8, 115.3, 116.3
    119.2, 120.2, 121.1, 122, 124.3
    124.8, 127, 127.7, 129.7, 130.6
    131.1, 132.8, 133.4, 135, 136.5
    138.7, 141.1, 145.8, 147, 149.7
    150.6, 152.6, 153.8, 167, 173.6
    174.1, 179.6, 183.3, 186.7, 187.2
    187.9, 196.2, 196.7, 206.3, 208.1
    209.9, 210.4, 212.3, 221, 222.8
    226.7, 234.2, 238.6, 239.1, 247.2
    247.7, 249.4, 253.7, 256.7, 264.8
    268.5, 271.9, 280.1, 283.5, 288.6
    291.8, 300.6, 312.8, 321.6, 323.9
    325.3, 345.7, 347.2, 349.1, 350.5
    351.9, 353.1, 367, 369, 384.9
    393.8, 404.8, 406.5, 430.4, 446.9
    481.8, 484.4
    qmpy=
    2.591, 4.42, 5.182, 5.395, 7.437
    7.315, 6.95, 1.585, 3.962, 6.309
    2.743, 0.823, 0.914, 1.067, 3.841
    7.376, 2.896, 1.585, 3.231, 7.62
    3.658, 7.254, 3.688, 7.559, 1.676
    3.719, 7.62, 1.524, 2.743, 4.877
    2.469, 7.559, 7.01, 2.804, 4.45
    1.981, 3.962, 0.61, 4.724, 5.212
    2.713, 5.517, 5.517, 4.267, 5.212
    2.469, 5.608, 2.926, 5.578, 5.426
    4.115, 5.883, 6.035, 5.913, 5.73
    5.944, 5.395, 5.73, 4.816, 5.791
    2.896, 0.64, 3.17, 3.17, 6.34
    4.054,3.383, 2.896, 7.285, 8.291
    3.048, 5.822, 6.157, 5.334, 2.682
    5.395, 4.633, 2.317, 2.286, 1.829
    1.219, 4.389, 8.656, 7.559, 7.559
    6.95, 7.59, 3.81, 7.712, 7.894
    7.681, 3.78
    nsp=0
```

```
p2= 493.13, tw= 455, go= 0
iq=0, fa=1
x(1)=
0, 0.16404, 0.32808, 0.49213, 0.65617
0.82021, 0.98425, 1.14829, 1.31234, 1.47638
1.64206
qf(1)=
102.6, 104.2, 104.9, 105.1, 104.6
103.2, 100.8, 96.8, 92.6, 88.8
    85
x(12)=
0, 0.16404, 0.32808, 0.49213, 0.65617
0.82021, 0.98425, 1.14829, 1.31234, 1.47638
1.64206
qf(12)=
88.6, 91.4, 94.6, 97.4, 99.3
100.8, 101.5, 101.3, 100.5, 99.6
    98.4
x(23)=
0, 0.16404, 0.32808, 0.49213, 0.65617
0.82021, 0.98425, 1.14829, 1.31234, 1.47638
1.64206
qf(23)=
97.9, 100, 100.8, 101.5, 101.5
101.3, 100.2, 99, 97.4, 96.4
    94
x(34)=
0, 0.16404, 0.32808, 0.49213, 0.65617
0.82021, 0.98425, 1.14829, 1.31234, 1.47638
1.64206
qf(34)=
137.7, 140, 141.6, 142.7, 142.3
141.6, 140.6, 138.7, 136, 133.7
    130.6
jn=11,11,11,11
jst=
1, 1, 1, 1, 1
1, 1, 1, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 3, 3, 3, 3
3, 3, 3, 3, 3
3, 3, 3, 3, 3
3, 3, 3, 4, 4
4, 4, 4, 4, 4
4, 4, 4, 4, 4
4, 4
$end
$frpmox
```

enrpu39 $=65.99$, enrpu40 $=23.45$, enrpu41 $=7.08$, enrpu $42=3.48$ \$end

A. 27 Advanced Test Reactor WG-MOX Rods

Oak Ridge National Laboratory has reported base-irradiation LHGR histories and post-irradiation FGR for seven fuel pins irradiated in the ATR (Morris et al. 2000, 2001, 2005; Hodge et al. 2002, 2003). These pins were irradiated in stainless steel capsules. Several pins were withdrawn for PIE after Phases II, III, and IV, after the pins had accumulated 21, 30, and 40 to $50 \mathrm{GWd} / \mathrm{MTM}$, respectively. The fuel used in these pins was fabricated using weapons-grade (WG) plutonium with a process similar to MIMAS. Fuel produced from WG plutonium differs from commercial MOX fuel in two ways. First, the WG MOX has greater amounts of ${ }^{239} \mathrm{Pu}$, and second, WG MOX contains small amounts of gallium.

The measured gas release values for these rods have been obtained by puncture measurement.
These three rods were used to assess the FRAPCON-3.4 MOX FGR predictions. The input files used for the MOX FGR assessments are shown below.

ATR Phase II, Capsule 2, Pin 5

```
* GOESINS:
FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
                CARRIAGE CONTROL='NONE'
*
* GOESOUTS:
FILE06='outapt2_2.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='stripf.2_2', STATUS='UNKNOWN', FORM='FORMATTED',
                CARRIAGE CONTROL='LIST'
/**************************************************************************
        ATR MOX Experiment: Phase II, Capsule 2 / Fuel Pin 5 (March 2005)
    $frpcn
    im=50,
    na=15,
    ngasr=45,
    nr=17,
$end
$frpcon
    crephr=10.0,
    catexf=0.05,
    cldwks=0.2,
    comp=5.0037,
    cpl=0.796,
    crdt = 0.0,
    crdtr=0.0,
    dco=0.38065,
    den=94.5,
    deng=0.5,
    dishsd=0.0491,
    dspg=0.30,
    dspgw=0.030,
    enrch=0.266457,
    fa=1.0,
    fgpav=11.1,
    flux(1)=16*0.5e12,
    fotmtl=2.0,
    gadoln=0.0,
    go(1) = 50*0.0,
    hdish=0.0082,
```

$h p l t=0.388867$,
icm=4,
icor=1,
idxgas=1,
imox=1,
imswch=0,
iplant=-2,
iq=0,
jdlpr=0,
jn=14*16,
jst $=10 * 1,2 * 2,2 * 3,2 * 4,3 * 5,4 * 6,2 * 7,2 * 8,4 * 9,3 * 10,2 * 11,2 * 12,4 * 13,8 * 14$,
nplot=1,
nsp=1,
nunits=1,
$\mathrm{p} 2(1)=50 * 12.5$,
pitch=0.38135,
ppmh2o=1.0,
ppmn2 $=40.0$,
qend=0.1,
$q f(1)=1.17414,0.97912,0.94777,0.94028,0.94496,0.95150,0.95711,0.96507$, $0.97396,0.98238,0.99174,1.00203,1.01466,1.03898,1.09184,1.26306$,
$q f(17)=1.14085,0.97201,0.94596,0.94211,0.94745,0.95373,0.95988,0.96719$, $0.97582,0.98360,0.99206,1.00171,1.01461,1.03974,1.09330,1.28081$,
$q f(33)=1.13291,0.97032,0.94553,0.94255,0.94804,0.95426,0.96053,0.96769$,
$0.97627,0.98389,0.99214,1.00164,1.01460,1.03992,1.09365,1.28504$,
$q f(49)=1.11777,0.96708,0.94471,0.94338,0.94917,0.95527,0.96179,0.96866$,
$0.97712,0.98445,0.99228,1.00149,1.01458,1.04026,1.09432,1.29312$,
$\operatorname{qf}(65)=1.10923,0.96526,0.94424,0.94385,0.94981,0.95584,0.96250,0.96920$, $0.97759,0.98476,0.99237,1.00141,1.01457,1.04046,1.09469,1.29767$,
$q f(81)=1.07437,0.95781,0.94235,0.94577,0.95242,0.95818,0.96539,0.97141$,
$0.97955,0.98604,0.99270,1.00108,1.01452,1.04125,1.09622,1.31626$,
$q f(97)=1.05352,0.95348,0.94134,0.94697,0.95401,0.95960,0.96713,0.97276$,
$0.98073,0.98683,0.99294,1.00094,1.01454,1.04174,1.09705,1.32636$,
$q f(113)=1.04096,0.95447,0.94421,0.94940,0.95606,0.96141,0.96855,0.97405$,
$0.98184,0.98787,0.99424,1.00261,1.01602,1.04247,1.09515,1.30231$,
$q f(129)=1.01962,0.95615,0.94909,0.95353,0.95955,0.96448,0.97098,0.97626$,
$0.98373,0.98965,0.99645,1.00545,1.01855,1.04371,1.09191,1.26144$,
$q f(145)=1.01210,0.95674,0.95081,0.95499,0.96078,0.96556,0.97183,0.97704$,
$0.98439,0.99028,0.99722,1.00645,1.01943,1.04415,1.09076,1.24703$,
$q f(161)=1.01077,0.95685,0.95111,0.95524,0.96099,0.96575,0.97198,0.97718$,
$0.98451,0.99039,0.99736,1.00663,1.01959,1.04423,1.09056,1.24449$,
$q f(177)=0.99922,0.95776,0.95375,0.95748,0.96288,0.96741,0.97329,0.97837$,
$0.98553,0.99136,0.99855,1.00817,1.02096,1.04490,1.08881,1.22237$,
$q f(193)=0.97768,0.95945,0.95867,0.96164,0.96640,0.97050,0.97573,0.98060$, $0.98744,0.99315,1.00078,1.01103,1.02350,1.04615,1.08554,1.18114$, $q f(209)=0.95523,0.95912,0.96227,0.96550,0.97006,0.97419,0.97901,0.98382$, $0.99036,0.99607,1.00400,1.01449,1.02640,1.04688,1.08026,1.13993$, $x(1)=0.00000000,0.03240556,0.06481111,0.09721667,0.12962222,0.16202778$, $0.19443333,0.22683889,0.25924444,0.29165000,0.32405556,0.35646111$, $0.38886667,0.42127222,0.45367778,0.48608333$,
$x(17)=0.00000000,0.03240556,0.06481111,0.09721667,0.12962222,0.16202778$, $0.19443333,0.22683889,0.25924444,0.29165000,0.32405556,0.35646111$, $0.38886667,0.42127222,0.45367778,0.48608333$,
$x(33)=0.00000000,0.03240556,0.06481111,0.09721667,0.12962222,0.16202778$, $0.19443333,0.22683889,0.25924444,0.29165000,0.32405556,0.35646111$, $0.38886667,0.42127222,0.45367778,0.48608333$,
$x(49)=0.00000000,0.03240556,0.06481111,0.09721667,0.12962222,0.16202778$,

```
    0.19443333,0.22683889,0.25924444,0.29165000,0.32405556,0.35646111,
    0.38886667,0.42127222,0.45367778,0.48608333,
x(65) =0.00000000,0.03240556,0.06481111,0.09721667,0.12962222,0.16202778,
    0.19443333,0.22683889,0.25924444,0.29165000,0.32405556,0.35646111,
    0.38886667,0.42127222,0.45367778,0.48608333,
x(81) =0.00000000,0.03240556,0.06481111,0.09721667,0.12962222,0.16202778,
        0.19443333,0.22683889,0.25924444,0.29165000,0.32405556,0.35646111,
    0.38886667,0.42127222,0.45367778,0.48608333,
x(97) =0.00000000,0.03240556,0.06481111,0.09721667,0.12962222,0.16202778,
    0.19443333,0.22683889,0.25924444,0.29165000,0.32405556,0.35646111,
    0.38886667,0.42127222,0.45367778,0.48608333,
x(113) =0.00000000,0.03240556,0.06481111,0.09721667,0.12962222,0.16202778,
            0.19443333,0.22683889,0.25924444,0.29165000,0.32405556,0.35646111,
        0.38886667,0.42127222,0.45367778,0.48608333,
x(129) =0.00000000,0.03240556,0.06481111,0.09721667,0.12962222,0.16202778,
        0.19443333,0.22683889,0.25924444,0.29165000,0.32405556,0.35646111,
        0.38886667,0.42127222,0.45367778,0.48608333,
x(145)=0.00000000,0.03240556,0.06481111,0.09721667,0.12962222,0.16202778,
        0.19443333,0.22683889,0.25924444,0.29165000,0.32405556,0.35646111,
        0.38886667,0.42127222,0.45367778,0.48608333,
x(161) =0.00000000,0.03240556,0.06481111,0.09721667,0.12962222,0.16202778,
        0.19443333,0.22683889,0.25924444,0.29165000,0.32405556,0.35646111,
        0.38886667,0.42127222,0.45367778,0.48608333,
x(177) =0.00000000,0.03240556,0.06481111,0.09721667,0.12962222,0.16202778,
        0.19443333,0.22683889,0.25924444,0.29165000,0.32405556,0.35646111,
        0.38886667,0.42127222,0.45367778,0.48608333,
x(193) =0.00000000,0.03240556,0.06481111,0.09721667,0.12962222,0.16202778,
        0.19443333,0.22683889,0.25924444,0.29165000,0.32405556,0.35646111,
        0.38886667,0.42127222,0.45367778,0.48608333,
x(209) =0.00000000,0.03240556,0.06481111,0.09721667,0.12962222,0.16202778,
        0.19443333,0.22683889,0.25924444,0.29165000,0.32405556,0.35646111,
    0.38886667,0.42127222,0.45367778,0.48608333,
qmpy(1)=1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,8.472,8.472,
        7.633,7.633,
        8.402,8.402,
        7.454,7.454,
        3*7.479,
        8.451,3*9.422,
        9.418,9.418,
        9.232,9.232,
        8.000,7.000,6.168,6.168,
        7.259,8.349,8.349,
        7.945,7.945,
        8.052,8.052,
        7.700,3*7.349,
        6.000,5.000,4.000,3.000,2.000,1.000,0.004,0.004,
rc=0.0,
roughc=26.0e-6,
roughf=72.4e-6,
rsntr=220.0,
sgapf=31.0,
slim=0.10,
thkcld=0.025725,
thkgap=0.001475,
ProblemTime=0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,48.4,
    48.5,61.2,
    61.3,83.4,
```

```
            83.5,97.5,
            97.6,126.0,154.9,
            155.0,155.1,169.2,182.3,
            182.4,203.3,
            203.4,239.7,
            239.8,239.9,240.0,258.9,
            259.0,259.1,261.4,
            261.5,284.3,
            284.4,326.4,
            326.5,326.6,354.6,382.6,
            382.7,382.8,382.9,383.0,383.1,383.2,383.3,390.0,
    tsint=3227.0,
    totl=0.48608333,
    tw(1)=209.5,263.8,318.1,372.4,426.6,480.9,535.2,589.5,2*617.6,
        2*575.6,
        2*612.1,
        2*565.6,
        3*564.7,
        610.6,3*656.4,
        2*655.4,
        2*645.3,
        585.2,536.5,2*495.9,
        548.6,2*601.3,
        2*582.1,
        2*585.5,
        567.8,3*550.1,
        480.9,426.6,372.4,318.1,263.8,209.5,2*110.2,
    vs=8.5,
$end
$frpmox
    enrpu39=93.845367,
    enrpu40= 6.009014,
    enrpu41= 0.122010,
    enrpu42= 0.023609,
$end
```


ATR Phase III, Capsule 3, Pin 6

* GOESINS:

FILEO5='nullfile', STATUS='UNKNOWN', FORM='FORMATTED', CARRIAGE CONTROL='NONE'
*

* GOESOUTS:

FILE06='outapt3_3.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='stripf. 3 _3', STATUS='UNKNOWN', FORM='FORMATTED', CARRIAGE CONTROL='LIST'

ATR MOX Experiment: Phase III, Capsule 3 / Fuel Pin 6 (March 2005)
\$frpen
im=63,
na=15,
ngasr=45,
$\mathrm{nr}=17$,
\$end
\$frpcon
crephr=10.0,
catexf=0.05,
cldwks=0.2,

```
comp=5.0037,
cpl=0.770,
crdt = 0.0,
crdtr=0.0,
dco=0.38065,
den=94.5,
deng=0.5,
dishsd=0.0491,
dspg=0.30,
dspgw=0.030,
enrch=0.266457,
fa=1.0,
fgpav=11.1,
flux(1)=16*0.5e12,
fotmtl=2.0,
gadoln=0.0,
go(1)=63*0.0,
hdish=0.0082,
hplt=0.390600,
icm=4,
icor=1,
idxgas=1,
imox=1,
imswch=0,
iplant=-2,
iq=0,
jdlpr=0,
jn=21*16,
jst=10* 1, 2* 2, 2* 3,2*4,3*5,4*6,2*7,2*8,4*9,3*10, 2* 11,2*12,
    4*13,2*14,3*15,2*16,2*17,2*18,2*19,2*20,6*21,
nplot=1,
nsp=1,
nunits=1,
p2(1)=63*12.5,
pitch=0.38135,
ppmh2o=1.0,
ppmn2=40.0,
qend=0.1,
qf(1)= 1.38500,1.08265,1.04509,1.01927,1.00283,0.99109,0.98077,0.97231,
    0.96433,0.95823,0.95024,0.94180,0.93241,0.92443,0.93288,1.21833,
qf(17)= 1.35352,1.08353,1.04738,1.02330,1.00731,0.99485,0.98367,0.97437,
    0.96542,0.95836,0.95020,0.94144,0.93254,0.92598,0.94088,1.18802,
qf(33)= 1.34608,1.08373,1.04792,1.02425,1.00837,0.99574,0.98436,0.97486,
    0.96568,0.95839,0.95019,0.94136,0.93257,0.92635,0.94277,1.18085,
qf(49)=1.33198,1.08413,1.04895,1.02605,1.01038,0.99742,0.98566,0.97579,
    0.96617,0.95844,0.95017,0.94119,0.93263,0.92705,0.94636,1.16727,
qf(65)= 1.32397,1.08435,1.04953,1.02708,1.01152,0.99837,0.98640,0.97631,
    0.96644,0.95847,0.95015,0.94110,0.93266,0.92744,0.94839,1.15956,
qf(81)= 1.29069,1.08528,1.05195,1.03134,1.01626,1.00235,0.98947,0.97849,
    0.96759,0.95861,0.95011,0.94072,0.93279,0.92909,0.95685,1.12751,
qf(97) = 1.27003,1.08591,1.05356,1.03397,1.01915,1.00478,0.99142,0.97992,
    0.96844,0.95887,0.95024,0.94063,0.93293,0.93009,0.96129,1.10761,
qf(113)=1.25211,1.08685,1.05574,1.03618,1.02125,1.00665,0.99344,0.98170,
    0.97018,0.96042,0.95154,0.94156,0.93341,0.93078,0.95911,1.09029,
qf(129)=1.22244,1.08842,1.05934,1.03984,1.02473,1.00974,0.99678,0.98464,
    0.97304,0.96299,0.95371,0.94310,0.93422,0.93192,0.95551,1.06163,
qf(145)=1.21225,1.08895,1.06057,1.04109,1.02593,1.01080,0.99793,0.98565,
```

$0.97403,0.96387,0.95445,0.94363,0.93450,0.93231,0.95428,1.05178$, $q f(161)=1.21051,1.08904,1.06078,1.04131,1.02613,1.01098,0.99813,0.98582$, $0.97420,0.96402,0.95457,0.94372,0.93455,0.93237,0.95407,1.05010$, $q f(177)=1.19433,1.08990,1.06275,1.04330,1.02803,1.01266,0.99995,0.98743$, $0.97576,0.96543,0.95575,0.94456,0.93499,0.93300,0.95210,1.03447$, $q f(193)=1.16532,1.09142,1.06627,1.04687,1.03143,1.01569,1.00322,0.99031$, $0.97857,0.96794,0.95787,0.94607,0.93578,0.93411,0.94858,1.00644$, $\operatorname{qf}(209)=1.13350,1.08848,1.06700,1.04915,1.03459,1.01947,1.00758,0.99476$, $0.98306,0.97232,0.96180,0.94939,0.93840,0.93570,0.94377,0.97556$, qf $(225)=1.12024,1.08249,1.06408,1.04840,1.03531,1.02152,1.01021,0.99795$, $0.98641,0.97581,0.96510,0.95249,0.94131,0.93674,0.94078,0.96255$, $\operatorname{qf}(241)=1.11612,1.08062,1.06317,1.04817,1.03554,1.02216,1.01102,0.99895$, $0.98745,0.97690,0.96612,0.95346,0.94222,0.93706,0.93985,0.95850$, $q f(257)=1.10995,1.07783,1.06182,1.04782,1.03587,1.02312,1.01224,1.00043$, $0.98901,0.97853,0.96766,0.95490,0.94357,0.93754,0.93846,0.95245$, $q f(273)=1.10025,1.07345,1.05968,1.04727,1.03640,1.02462,1.01416,1.00277$, $0.99145,0.98108,0.97007,0.95717,0.94570,0.93830,0.93627,0.94293$, $\operatorname{qf}(289)=1.08466,1.06639,1.05625,1.04639,1.03725,1.02704,1.01725,1.00653$, $0.99539,0.98520,0.97395,0.96083,0.94912,0.93953,0.93275,0.92762$, $q f(305)=1.07175,1.06056,1.05340,1.04566,1.03796,1.02904,1.01981,1.00964$, $0.99865,0.98860,0.97716,0.96385,0.95195,0.94054,0.92984,0.91496$, $\operatorname{qf}(321)=1.05607,1.05346,1.04995,1.04477,1.03881,1.03147,1.02291,1.01342$, $1.00260,0.99274,0.98107,0.96752,0.95539,0.94177,0.92630,0.89956$,
$x(1)=0.00000000,0.03255000,0.06510000,0.09765000,0.13020000,0.16275000$, $0.19530000,0.22785000,0.26040000,0.29295000,0.32550000,0.35805000$, $0.39060000,0.42315000,0.45570000,0.48825000$,
$x(17)=0.00000000,0.03255000,0.06510000,0.09765000,0.13020000,0.16275000$, $0.19530000,0.22785000,0.26040000,0.29295000,0.32550000,0.35805000$, $0.39060000,0.42315000,0.45570000,0.48825000$,
$x(33)=0.00000000,0.03255000,0.06510000,0.09765000,0.13020000,0.16275000$, $0.19530000,0.22785000,0.26040000,0.29295000,0.32550000,0.35805000$, $0.39060000,0.42315000,0.45570000,0.48825000$,
$x(49)=0.00000000,0.03255000,0.06510000,0.09765000,0.13020000,0.16275000$, $0.19530000,0.22785000,0.26040000,0.29295000,0.32550000,0.35805000$, $0.39060000,0.42315000,0.45570000,0.48825000$,
$x(65)=0.00000000,0.03255000,0.06510000,0.09765000,0.13020000,0.16275000$, $0.19530000,0.22785000,0.26040000,0.29295000,0.32550000,0.35805000$, $0.39060000,0.42315000,0.45570000,0.48825000$,
$x(81)=0.00000000,0.03255000,0.06510000,0.09765000,0.13020000,0.16275000$, $0.19530000,0.22785000,0.26040000,0.29295000,0.32550000,0.35805000$, $0.39060000,0.42315000,0.45570000,0.48825000$,
$x(97)=0.00000000,0.03255000,0.06510000,0.09765000,0.13020000,0.16275000$, $0.19530000,0.22785000,0.26040000,0.29295000,0.32550000,0.35805000$, $0.39060000,0.42315000,0.45570000,0.48825000$,
$x(113)=0.00000000,0.03255000,0.06510000,0.09765000,0.13020000,0.16275000$, $0.19530000,0.22785000,0.26040000,0.29295000,0.32550000,0.35805000$, $0.39060000,0.42315000,0.45570000,0.48825000$,
$x(129)=0.00000000,0.03255000,0.06510000,0.09765000,0.13020000,0.16275000$, $0.19530000,0.22785000,0.26040000,0.29295000,0.32550000,0.35805000$, $0.39060000,0.42315000,0.45570000,0.48825000$,
$x(145)=0.00000000,0.03255000,0.06510000,0.09765000,0.13020000,0.16275000$, $0.19530000,0.22785000,0.26040000,0.29295000,0.32550000,0.35805000$, $0.39060000,0.42315000,0.45570000,0.48825000$,
$x(161)=0.00000000,0.03255000,0.06510000,0.09765000,0.13020000,0.16275000$, $0.19530000,0.22785000,0.26040000,0.29295000,0.32550000,0.35805000$, $0.39060000,0.42315000,0.45570000,0.48825000$,
$x(177)=0.00000000,0.03255000,0.06510000,0.09765000,0.13020000,0.16275000$,
A. 131

```
    0.19530000,0.22785000,0.26040000,0.29295000,0.32550000,0.35805000,
    0.39060000,0.42315000,0.45570000,0.48825000,
x(193) =0.00000000,0.03255000,0.06510000,0.09765000,0.13020000,0.16275000,
    0.19530000,0.22785000,0.26040000,0.29295000,0.32550000,0.35805000,
    0.39060000,0.42315000,0.45570000,0.48825000,
x(209) =0.00000000,0.03255000,0.06510000,0.09765000,0.13020000,0.16275000,
    0.19530000,0.22785000,0.26040000,0.29295000,0.32550000,0.35805000,
    0.39060000,0.42315000,0.45570000,0.48825000,
x(225) =0.00000000,0.03255000,0.06510000,0.09765000,0.13020000,0.16275000,
    0.19530000,0.22785000,0.26040000,0.29295000,0.32550000,0.35805000,
    0.39060000,0.42315000,0.45570000,0.48825000,
x(241) =0.00000000,0.03255000,0.06510000,0.09765000,0.13020000,0.16275000,
    0.19530000,0.22785000,0.26040000,0.29295000,0.32550000,0.35805000,
    0.39060000,0.42315000,0.45570000,0.48825000,
x(257) =0.00000000,0.03255000,0.06510000,0.09765000,0.13020000,0.16275000,
    0.19530000,0.22785000,0.26040000,0.29295000,0.32550000,0.35805000,
    0.39060000,0.42315000,0.45570000,0.48825000,
x(273) =0.00000000,0.03255000,0.06510000,0.09765000,0.13020000,0.16275000,
            0.19530000,0.22785000,0.26040000,0.29295000,0.32550000,0.35805000,
    0.39060000,0.42315000,0.45570000,0.48825000,
x(289) =0.00000000,0.03255000,0.06510000,0.09765000,0.13020000,0.16275000,
            0.19530000,0.22785000,0.26040000,0.29295000,0.32550000,0.35805000,
            0.39060000,0.42315000,0.45570000,0.48825000,
x(305) =0.00000000,0.03255000,0.06510000,0.09765000,0.13020000,0.16275000,
            0.19530000,0.22785000,0.26040000,0.29295000,0.32550000,0.35805000,
    0.39060000,0.42315000,0.45570000,0.48825000,
x(321) =0.00000000,0.03255000,0.06510000,0.09765000,0.13020000,0.16275000,
    0.19530000,0.22785000,0.26040000,0.29295000,0.32550000,0.35805000,
    0.39060000,0.42315000,0.45570000,0.48825000,
qmpy(1)=1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,8.379,8.379,
    7.495,7.495,
    8.184,8.184,
    7.319,7.319,
    3*7.470,
    8.526,3*9.581,
    9.580,9.580,
    9.145,9.145,
    8.000,7.000,5.958,5.958,
    6.875,7.791,7.791,
    7.928,7.928,
    7.734,7.734,
    7.449,3*7.164,
    6.327,6.327,
    5.552,4.776,4.776,
    5.128,5.128,
    5.868,5.868,
    5.347,5.347,
    5.118,5.118,
    5.098,5.098,
    4.0,3.0,2.0,1.0,0.004,0.004,
rc=0.0,
roughc=26.0e-6,
roughf=72.4e-6,
rsntr=220.0,
sgapf=31.0,
slim=0.10,
thkcld=0.025725,
```

A. 132

```
    thkgap=0.001475,
    ProblemTime=0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,48.4,
        48.5,61.2,
        61.3,83.4,
        83.5,97.5,
        97.6,126.2,154.9,
        155.0,155.1,169.2,182.3,
        182.4,203.3,
        203.4,239.7,
        239.8,239.9,240.0,258.9,
        259.0,259.1,261.4,
        261.5,284.3,
        284.4,326.4,
        326.5,326.6,354.5,382.6,
        382.7,416.6,
        416.7,416.8,430.6,
        430.7,450.1,
        450.2,476.9,
        477.0,524.2,
        524.3,565.1,
        565.2,615.0,
        615.1,615.2,615.3,615.4,615.5,615.6,
    tsint=3227.0,
    totl=0.48825000,
    tw(1) =209.5,263.8,318.1,372.4,426.6,480.9,535.2,589.5,2*613.0,
        2*569.0,
        2*601.5,
        2*558.9,
        3*564.7,
        614.3,3*663.9,
        2*662.9,
        2*641.0,
        585.1,536.2,2*485.3,
        529.9,2*574.5,
        2*580.7,
        2*570.3,
        555.7,3*541.1,
        2*498.2,
        459.0,2*419.8,
        2*436.3,
        2*471.8,
        2*444.4,
        2*431.0,
        2*427.8,
        372.4,318.1,263.8,209.5,2*110.2,
    vs=8.5,
$end
$frpmox
    enrpu39=93.845367,
    enrpu40= 6.009014,
    enrpu41= 0.122010,
    enrpu42= 0.023609,
$end
```


ATR Phase III, Capsule 10, Pin 13

* GOESINS:

FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',

* GOESOUTS:
FILE06='outapt3_10.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='stripf.310', STATUS='UNKNOWN', FORM='FORMATTED',
CARRIAGE CONTROL='LIST'

ATR MOX Experiment: Phase III, Capsule 10 / Fuel Pin 13 (March 2005)
\$frpen
im=62,
na=15,
ngasr=45,
$\mathrm{nr}=17$,
\$end
\$frpcon
crephr=10.0,
catexf=0.05,
cldwks=0.2,
comp $=5.0037$,
cpl=0.816,
crdt $=0.0$,
crdtr=0.0,
$\mathrm{dco}=0.38065$,
den=95.2,
deng=0.5,
dishsd=0.0496,
dspg=0.30,
dspgw=0.030,
enrch=0.266457,
fa=1.0,
fgpav=11.1,
flux (1) $=16 * 0.5 e 12$,
fotmtl=2.0,
gadoln=0.0,
go (1) $=62 * 0.0$,
hdish=0.0063,
$h p l t=0.387533$,
icm=4,
icor=1,
idxgas=1,
imox=1,
imswch=0,
iplant=-2,
iq=0,
jdlpr=0,
jn=21*16,
jst $=10 * 1,2 * 2,2 * 3,2 * 4,3 * 5,4 * 6,2 * 7,2 * 8,4 * 9,3 * 10,2 * 11,2 * 12$,
$4 * 13,2 * 14,2 * 15,2 * 16,2 * 17,2 * 18,2 * 19,2 * 20,6 * 21$,
nplot=1,
nsp=1,
nunits=1,
p2 (1) = 62*12.5,
pitch=0.38135,
ppmh2o=1.0,
ppmn2 $=40.0$,
qend=0.1,
$q f(1)=1.38500,1.08265,1.04509,1.01927,1.00283,0.99109,0.98077,0.97231$,
$0.96433,0.95823,0.95024,0.94180,0.93241,0.92443,0.93288,1.21833$, $q f(17)=1.35375,1.08352,1.04736,1.02327,1.00728,0.99482,0.98365,0.97436$, $0.96541,0.95836,0.95020,0.94144,0.93254,0.92597,0.94082,1.18824$, $q f(33)=1.34619,1.08373,1.04791,1.02424,1.00836,0.99572,0.98435,0.97485$,
$0.96567,0.95839,0.95019,0.94136,0.93257,0.92635,0.94274,1.18096$,
$q f(49)=1.33209,1.08412,1.04894,1.02604,1.01037,0.99741,0.98565,0.97578$, $0.96616,0.95844,0.95017,0.94120,0.93263,0.92704,0.94633,1.16738$, $q f(65)=1.32408,1.08435,1.04952,1.02707,1.01151,0.99836,0.98639,0.97630$, $0.96644,0.95847,0.95016,0.94110,0.93266,0.92744,0.94836,1.15966$, $q f(81)=1.29080,1.08528,1.05194,1.03133,1.01625,1.00233,0.98946,0.97848$, $0.96759,0.95861,0.95011,0.94073,0.93279,0.92909,0.95682,1.12762$, $q f(97)=1.27024,1.08590,1.05353,1.03395,1.01912,1.00476,0.99139,0.97990$,
$0.96842,0.95885,0.95022,0.94062,0.93292,0.93008,0.96131,1.10781$, $q f(113)=1.25236,1.08684,1.05570,1.03615,1.02122,1.00662,0.99341,0.98167$, $0.97015,0.96040,0.95152,0.94154,0.93341,0.93077,0.95915,1.09054$, $q f(129)=1.22270,1.08840,1.05930,1.03980,1.02470,1.00971,0.99675,0.98461$, $0.97302,0.96297,0.95369,0.94309,0.93421,0.93191,0.95555,1.06188$, qf (145) $=1.21247,1.08894,1.06055,1.04107,1.02590,1.01077,0.99790,0.98563$,
$0.97401,0.96385,0.95443,0.94362,0.93449,0.93230,0.95430,1.05199$, $q f(161)=1.21072,1.08903,1.06076,1.04128,1.02611,1.01096,0.99810,0.98580$,
$0.97418,0.96401,0.95456,0.94371,0.93454,0.93237,0.95409,1.05031$, $q f(177)=1.19446,1.08989,1.06273,1.04328,1.02801,1.01265,0.99993,0.98741$, $0.97575,0.96541,0.95574,0.94455,0.93498,0.93299,0.95212,1.03460$, $q f(193)=1.16570,1.09140,1.06622,1.04683,1.03139,1.01565,1.00317,0.99027$,
$0.97853,0.96791,0.95784,0.94605,0.93577,0.93409,0.94863,1.00681$, $\operatorname{qf}(209)=1.13395,1.08869,1.06710,1.04917,1.03457,1.01940,1.00749,0.99465$,
$0.98295,0.97220,0.96169,0.94928,0.93830,0.93566,0.94387,0.97600$,
$\operatorname{qf}(225)=1.12078,1.08273,1.06420,1.04843,1.03528,1.02144,1.01010,0.99782$,
$0.98628,0.97567,0.96496,0.95237,0.94119,0.93669,0.94090,0.96307$, $\operatorname{qf}(241)=1.11657,1.08082,1.06327,1.04819,1.03551,1.02209,1.01094,0.99884$,
$0.98734,0.97678,0.96601,0.95335,0.94212,0.93702,0.93995,0.95894$,
$q f(257)=1.11038,1.07803,1.06191,1.04784,1.03585,1.02305,1.01216,1.00033$, $0.98890,0.97841,0.96755,0.95480,0.94347,0.93751,0.93855,0.95287$, $q f(273)=1.10070,1.07365,1.05978,1.04729,1.03638,1.02455,1.01408,1.00266$,
$0.99134,0.98097,0.96996,0.95707,0.94560,0.93827,0.93637,0.94337$, $\operatorname{qf}(289)=1.08511,1.06660,1.05634,1.04641,1.03723,1.02697,1.01716,1.00642$,
$0.99528,0.98508,0.97384,0.96072,0.94902,0.93949,0.93285,0.92806$,
$q f(305)=1.07220,1.06076,1.05350,1.04568,1.03793,1.02897,1.01972,1.00953$, $0.99853,0.98848,0.97705,0.96375,0.95185,0.94050,0.92994,0.91540$, $q f(321)=1.05652,1.05367,1.05005,1.04479,1.03879,1.03140,1.02282,1.01331$, $1.00249,0.99262,0.98096,0.96742,0.95530,0.94173,0.92640,0.90000$, $x(1)=0.00000000,0.03229444,0.06458889,0.09688333,0.12917778,0.16147222$, $0.19376667,0.22606111,0.25835556,0.29065000,0.32294444,0.35523889$, $0.38753333,0.41982778,0.45212222,0.48441667$,
$x(17)=0.00000000,0.03229444,0.06458889,0.09688333,0.12917778,0.16147222$, $0.19376667,0.22606111,0.25835556,0.29065000,0.32294444,0.35523889$, $0.38753333,0.41982778,0.45212222,0.48441667$,
$x(33)=0.00000000,0.03229444,0.06458889,0.09688333,0.12917778,0.16147222$, $0.19376667,0.22606111,0.25835556,0.29065000,0.32294444,0.35523889$, $0.38753333,0.41982778,0.45212222,0.48441667$,
$x(49)=0.00000000,0.03229444,0.06458889,0.09688333,0.12917778,0.16147222$, $0.19376667,0.22606111,0.25835556,0.29065000,0.32294444,0.35523889$, $0.38753333,0.41982778,0.45212222,0.48441667$,
$x(65)=0.00000000,0.03229444,0.06458889,0.09688333,0.12917778,0.16147222$, $0.19376667,0.22606111,0.25835556,0.29065000,0.32294444,0.35523889$, $0.38753333,0.41982778,0.45212222,0.48441667$,
$x(81)=0.00000000,0.03229444,0.06458889,0.09688333,0.12917778,0.16147222$,
$0.19376667,0.22606111,0.25835556,0.29065000,0.32294444,0.35523889$, $0.38753333,0.41982778,0.45212222,0.48441667$,
$x(97)=0.00000000,0.03229444,0.06458889,0.09688333,0.12917778,0.16147222$, $0.19376667,0.22606111,0.25835556,0.29065000,0.32294444,0.35523889$, $0.38753333,0.41982778,0.45212222,0.48441667$,
$x(113)=0.00000000,0.03229444,0.06458889,0.09688333,0.12917778,0.16147222$, $0.19376667,0.22606111,0.25835556,0.29065000,0.32294444,0.35523889$, $0.38753333,0.41982778,0.45212222,0.48441667$,
$x(129)=0.00000000,0.03229444,0.06458889,0.09688333,0.12917778,0.16147222$, $0.19376667,0.22606111,0.25835556,0.29065000,0.32294444,0.35523889$, $0.38753333,0.41982778,0.45212222,0.48441667$,
$x(145)=0.00000000,0.03229444,0.06458889,0.09688333,0.12917778,0.16147222$, $0.19376667,0.22606111,0.25835556,0.29065000,0.32294444,0.35523889$, $0.38753333,0.41982778,0.45212222,0.48441667$,
$x(161)=0.00000000,0.03229444,0.06458889,0.09688333,0.12917778,0.16147222$, $0.19376667,0.22606111,0.25835556,0.29065000,0.32294444,0.35523889$, $0.38753333,0.41982778,0.45212222,0.48441667$,
$x(177)=0.00000000,0.03229444,0.06458889,0.09688333,0.12917778,0.16147222$, $0.19376667,0.22606111,0.25835556,0.29065000,0.32294444,0.35523889$, $0.38753333,0.41982778,0.45212222,0.48441667$,
$x(193)=0.00000000,0.03229444,0.06458889,0.09688333,0.12917778,0.16147222$, $0.19376667,0.22606111,0.25835556,0.29065000,0.32294444,0.35523889$, $0.38753333,0.41982778,0.45212222,0.48441667$,
$x(209)=0.00000000,0.03229444,0.06458889,0.09688333,0.12917778,0.16147222$, $0.19376667,0.22606111,0.25835556,0.29065000,0.32294444,0.35523889$, $0.38753333,0.41982778,0.45212222,0.48441667$,
$x(225)=0.00000000,0.03229444,0.06458889,0.09688333,0.12917778,0.16147222$, $0.19376667,0.22606111,0.25835556,0.29065000,0.32294444,0.35523889$, $0.38753333,0.41982778,0.45212222,0.48441667$,
$x(241)=0.00000000,0.03229444,0.06458889,0.09688333,0.12917778,0.16147222$, $0.19376667,0.22606111,0.25835556,0.29065000,0.32294444,0.35523889$, $0.38753333,0.41982778,0.45212222,0.48441667$,
$x(257)=0.00000000,0.03229444,0.06458889,0.09688333,0.12917778,0.16147222$, $0.19376667,0.22606111,0.25835556,0.29065000,0.32294444,0.35523889$, $0.38753333,0.41982778,0.45212222,0.48441667$,
$x(273)=0.00000000,0.03229444,0.06458889,0.09688333,0.12917778,0.16147222$, $0.19376667,0.22606111,0.25835556,0.29065000,0.32294444,0.35523889$, $0.38753333,0.41982778,0.45212222,0.48441667$,
$x(289)=0.00000000,0.03229444,0.06458889,0.09688333,0.12917778,0.16147222$, $0.19376667,0.22606111,0.25835556,0.29065000,0.32294444,0.35523889$, $0.38753333,0.41982778,0.45212222,0.48441667$,
$x(305)=0.00000000,0.03229444,0.06458889,0.09688333,0.12917778,0.16147222$, $0.19376667,0.22606111,0.25835556,0.29065000,0.32294444,0.35523889$, $0.38753333,0.41982778,0.45212222,0.48441667$,
$x(321)=0.00000000,0.03229444,0.06458889,0.09688333,0.12917778,0.16147222$, $0.19376667,0.22606111,0.25835556,0.29065000,0.32294444,0.35523889$, $0.38753333,0.41982778,0.45212222,0.48441667$,
qmpy (1) $=1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,8.570,8.570$,
7.838,7.838,
8.432,8.432,
7.540,7.540,

3*7.696,
8.767,3*9.837,
9.840, 9.840,
9.421,9.421,
8.000,7.000,6.161,6.161, 7.124,8.086,8.086,
A. 136

```
    8.207,8.207,
    7.896,7.896,
    7.612,3*7.327,
    6.474,6.474,
    5.027,5.027,
    5.299,5.299,
    6.034,6.034,
    5.509,5.509,
    5.272,5.272,
    5.252,5.252,
    4.0,3.0,2.0,1.0,0.004,0.004,
rc=0.0,
roughc=26.0e-6,
roughf=72.4e-6,
rsntr=220.0,
sgapf=31.0,
slim=0.10,
thkcld=0.025725,
thkgap=0.001475,
ProblemTime=0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,48.4,
    48.5,61.2,
    61.3,83.4,
    83.5,97.5,
    97.6,126.2,154.9,
    155.0,155.1,169.2,182.3,
    182.4,203.3,
    203.4,239.7,
    239.8,239.9,240.0,258.9,
    259.0,259.1,261.4,
    261.5,284.3,
    284.4,326.4,
    326.5,326.6,354.5,382.6,
    382.7,416.6,
    416.7,430.6,
    430.7,450.1,
    450.2,476.9,
    477.0,524.2,
    524.3,565.1,
    565.2,615.0,
    615.1,615.2,615.3,615.4,615.5,615.6,
tsint=3227.0,
totl=0.48441667,
tw (1) =209.5,263.8,318.1,372.4,426.6,480.9,535.2,589.5,2*621.5,
    2*584.0,
    2*611.3,
    2*567.2,
    3*572.1,
    621.2,3*670.3,
    2*668.3,
    2*646.3,
    577.7,529.5,2*489.0,
    534.9,2*580.7,
    2*585.6,
    2*569.1,
    554.1,3*539.0,
    2*495.8,
    2*424.2,
```

```
            2*436.6,
            2*470.5,
            2*443.8,
            2*430.1,
            2*427.0,
            372.4,318.1,263.8,209.5,2*110.2,
        vs=8.5,
$end
$frpmox
    enrpu39=93.845367,
    enrpu40= 6.009014,
    enrpu41= 0.122010,
    enrpu42= 0.023609,
$end
```


ATR Phase IV, Capsule 4, Pin 7

* GOESINS:

```
FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
```

 CARRIAGE CONTROL='NONE'
 \star

* GOESOUTS:
FILE06='outapt4_4.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='stripf.4_4', STATUS='UNKNOWN', FORM='FORMATTED',
CARRIAGE CONTROL='LIST'

ATR MOX Experiment: Phase IV, Capsule 4 / Fuel Pin 7 (March 2005)
\$frpen
im=89,
na=15,
ngasr=45,
$\mathrm{nr}=17$,
\$end
\$frpcon
crephr=10.0,
catexf=0.05,
cldwks=0.2,
comp=5.0037,
cpl=0.813,
crdt $=0.0$,
crdtr=0.0,
dco=0.38065,
den=94.5,
deng=0.5,
dishsd=0.0491,
dspg=0.30,
dspgw=0.030,
enrch=0.266457,
fa=1.0,
fgpav=11.1,
flux (1)=16*0.5e12,
fotmtl=2.0,
gadoln=0.0,
go (1) $=89 * 0.0$,
hdish=0.0082,
hplt=0.387733,
icm=4,
icor=1,
idxgas=1,
imox=1,
imswch=0,
iplant=-2,
iq=0,
jdlpr=0,
jn=22*16,
jst $=7 * 1,6 * 2,3 * 3,8 * 4,2 * 5,10 * 6,2 * 7,3 * 8,3 * 9,3 * 10,4 * 11,2 * 12$, $2 * 13,3 * 14,8 * 15,2 * 16,2 * 17,3 * 18,2 * 19,4 * 20,3 * 21,7 * 22$,
nplot=1,
nsp=1,
nunits=1,
$\mathrm{p} 2(1)=89 * 12.5$,
pitch=0.38135,
ppmh20=1.0,
ppmn2 $=40.0$,
qend=0.1,
$q f(1)=1.38500,1.08265,1.04509,1.01927,1.00283,0.99109,0.98077,0.97231$, $0.96433,0.95823,0.95024,0.94180,0.93241,0.92443,0.93288,1.21833$,
$q f(17)=1.35713,1.08343,1.04712,1.02283,1.00680,0.99442,0.98334,0.97414$,
$0.96530,0.95834,0.95020,0.94148,0.93252,0.92580,0.93996,1.19150$,
$q f(33)=1.34089,1.08388,1.04830,1.02491,1.00911,0.99636,0.98484,0.97520$, $0.96586,0.95841,0.95018,0.94130,0.93259,0.92661,0.94409,1.17585$,
$q f(49)=1.22019,1.01715,0.98447,0.97655,0.97360,0.97231,0.97213,0.97213$,
$0.97249,0.97268,0.97305,0.97360,0.97902,0.99289,1.03847,1.23877$,
$q f(65)=1.17472,1.01240,0.98010,0.97495,0.97464,0.97451,0.97449,0.97449$, $0.97453,0.97455,0.97458,0.97464,0.98124,0.99649,1.04093,1.26022$,
$\operatorname{qf}(81)=1.13476,1.00986,0.98359,0.97964,0.97964,0.97964,0.97964,0.97964$, $0.97964,0.97964,0.97964,0.97964,0.98441,0.99627,1.03449,1.21447$,
$q f(97)=1.11682,1.00883,0.98568,0.98217,0.98217,0.98217,0.98217,0.98217$, $0.98217,0.98217,0.98217,0.98217,0.98592,0.99594,1.03100,1.18941$,
$q f(113)=1.08737,1.00713,0.98910,0.98632,0.98632,0.98632,0.98632,0.98632$, $0.98632,0.98632,0.98632,0.98632,0.98839,0.99540,1.02527,1.14827$,
qf (129) $=0.96029,0.96082,0.96265,0.96501,0.96924,0.97300,0.97771,0.98239$,
$0.98898,0.99460,1.00257,1.01335,1.02556,1.04716,1.08290,1.14783$,
$q f(145)=0.95221,0.95800,0.96197,0.96577,0.97055,0.97492,0.97983,0.98472$,
$0.99122,0.99699,1.00489,1.01520,1.02691,1.04669,1.07860,1.13529$,
$q f(161)=0.94971,0.95708,0.96172,0.96599,0.97095,0.97553,0.98050,0.98546$, $0.99194,0.99775,1.00564,1.01578,1.02734,1.04652,1.07722,1.13146$, $q f(177)=0.94018,0.95356,0.96077,0.96685,0.97249,0.97784,0.98307,0.98829$, $0.99468,1.00066,1.00846,1.01800,1.02895,1.04591,1.07197,1.11685$, $q f(193)=0.93091,0.95013,0.95985,0.96768,0.97398,0.98009,0.98556,0.99103$, $0.99734,1.00349,1.01121,1.02016,1.03053,1.04531,1.06686,1.10264$, $q f(209)=0.92325,0.94730,0.95908,0.96836,0.97522,0.98194,0.98763,0.99330$, $0.99954,1.00583,1.01347,1.02195,1.03183,1.04482,1.06264,1.09091$, $q f(225)=0.97908,0.98804,0.99605,0.99974,1.00103,1.00103,1.00103,1.00103$, $1.00103,1.00103,1.00103,1.00103,1.00103,1.00131,1.00502,1.02204$, $q f(241)=0.97218,0.98634,0.99623,1.00049,1.00194,1.00200,1.00203,1.00205$, $1.00205,1.00204,1.00202,1.00199,1.00193,1.00188,1.00362,1.01461$, $q f(257)=0.97054,0.98546,0.99571,1.00032,1.00208,1.00260,1.00277,1.00295$, $1.00295,1.00289,1.00272,1.00248,1.00202,1.00162,1.00239,1.01155$, $q f(273)=0.96941,0.98486,0.99535,1.00021,1.00218,1.00301,1.00329,1.00357$, $1.00357,1.00348,1.00320,1.00283,1.00208,1.00143,1.00153,1.00942$, $\operatorname{qf}(289)=0.96712,0.98363,0.99462,0.99997,1.00237,1.00385,1.00434,1.00483$, $1.00483,1.00467,1.00417,1.00352,1.00220,1.00105,0.99981,1.00513$, qf (305) $=0.96530,0.98266,0.99404,0.99979,1.00252,1.00451,1.00517,1.00584$, $1.00584,1.00562,1.00495,1.00407,1.00230,1.00076,0.99843,1.00172$,
$q f(321)=0.96206,0.98093,0.99300,0.99946,1.00280,1.00569,1.00665,1.00762$, $1.00762,1.00730,1.00633,1.00505,1.00247,1.00022,0.99599,0.99566$, $q f(337)=0.95898,0.97928,0.99202,0.99915,1.00306,1.00681,1.00807,1.00932$, $1.00932,1.00890,1.00765,1.00598,1.00264,0.99972,0.99367,0.98987$,
$x(1)=0.00000000,0.03231111,0.06462222,0.09693333,0.12924444,0.16155556$, $0.19386667,0.22617778,0.25848889,0.29080000,0.32311111,0.35542222$, $0.38773333,0.42004444,0.45235556,0.48466667$,
$x(17)=0.00000000,0.03231111,0.06462222,0.09693333,0.12924444,0.16155556$, $0.19386667,0.22617778,0.25848889,0.29080000,0.32311111,0.35542222$, $0.38773333,0.42004444,0.45235556,0.48466667$,
$x(33)=0.00000000,0.03231111,0.06462222,0.09693333,0.12924444,0.16155556$, $0.19386667,0.22617778,0.25848889,0.29080000,0.32311111,0.35542222$, $0.38773333,0.42004444,0.45235556,0.48466667$,
$x(49)=0.00000000,0.03231111,0.06462222,0.09693333,0.12924444,0.16155556$, $0.19386667,0.22617778,0.25848889,0.29080000,0.32311111,0.35542222$, $0.38773333,0.42004444,0.45235556,0.48466667$,
$x(65)=0.00000000,0.03231111,0.06462222,0.09693333,0.12924444,0.16155556$, $0.19386667,0.22617778,0.25848889,0.29080000,0.32311111,0.35542222$, $0.38773333,0.42004444,0.45235556,0.48466667$,
$x(81)=0.00000000,0.03231111,0.06462222,0.09693333,0.12924444,0.16155556$, $0.19386667,0.22617778,0.25848889,0.29080000,0.32311111,0.35542222$, $0.38773333,0.42004444,0.45235556,0.48466667$,
$x(97)=0.00000000,0.03231111,0.06462222,0.09693333,0.12924444,0.16155556$, $0.19386667,0.22617778,0.25848889,0.29080000,0.32311111,0.35542222$, $0.38773333,0.42004444,0.45235556,0.48466667$,
$x(113)=0.00000000,0.03231111,0.06462222,0.09693333,0.12924444,0.16155556$, $0.19386667,0.22617778,0.25848889,0.29080000,0.32311111,0.35542222$, $0.38773333,0.42004444,0.45235556,0.48466667$,
$x(129)=0.00000000,0.03231111,0.06462222,0.09693333,0.12924444,0.16155556$, $0.19386667,0.22617778,0.25848889,0.29080000,0.32311111,0.35542222$, $0.38773333,0.42004444,0.45235556,0.48466667$,
$x(145)=0.00000000,0.03231111,0.06462222,0.09693333,0.12924444,0.16155556$, $0.19386667,0.22617778,0.25848889,0.29080000,0.32311111,0.35542222$, $0.38773333,0.42004444,0.45235556,0.48466667$,
$x(161)=0.00000000,0.03231111,0.06462222,0.09693333,0.12924444,0.16155556$, $0.19386667,0.22617778,0.25848889,0.29080000,0.32311111,0.35542222$, $0.38773333,0.42004444,0.45235556,0.48466667$,
$x(177)=0.00000000,0.03231111,0.06462222,0.09693333,0.12924444,0.16155556$, $0.19386667,0.22617778,0.25848889,0.29080000,0.32311111,0.35542222$, $0.38773333,0.42004444,0.45235556,0.48466667$,
$x(193)=0.00000000,0.03231111,0.06462222,0.09693333,0.12924444,0.16155556$, $0.19386667,0.22617778,0.25848889,0.29080000,0.32311111,0.35542222$, $0.38773333,0.42004444,0.45235556,0.48466667$,
$x(209)=0.00000000,0.03231111,0.06462222,0.09693333,0.12924444,0.16155556$, $0.19386667,0.22617778,0.25848889,0.29080000,0.32311111,0.35542222$, $0.38773333,0.42004444,0.45235556,0.48466667$,
$x(225)=0.00000000,0.03231111,0.06462222,0.09693333,0.12924444,0.16155556$, $0.19386667,0.22617778,0.25848889,0.29080000,0.32311111,0.35542222$, $0.38773333,0.42004444,0.45235556,0.48466667$,
$x(241)=0.00000000,0.03231111,0.06462222,0.09693333,0.12924444,0.16155556$, $0.19386667,0.22617778,0.25848889,0.29080000,0.32311111,0.35542222$, $0.38773333,0.42004444,0.45235556,0.48466667$,
$x(257)=0.00000000,0.03231111,0.06462222,0.09693333,0.12924444,0.16155556$, $0.19386667,0.22617778,0.25848889,0.29080000,0.32311111,0.35542222$, $0.38773333,0.42004444,0.45235556,0.48466667$,
$x(273)=0.00000000,0.03231111,0.06462222,0.09693333,0.12924444,0.16155556$, $0.19386667,0.22617778,0.25848889,0.29080000,0.32311111,0.35542222$,

A. 140

```
    0.38773333,0.42004444,0.45235556,0.48466667,
x(289) =0.00000000,0.03231111,0.06462222,0.09693333,0.12924444,0.16155556,
    0.19386667,0.22617778,0.25848889,0.29080000,0.32311111,0.35542222,
    0.38773333,0.42004444,0.45235556,0.48466667,
x(305) =0.00000000,0.03231111,0.06462222,0.09693333,0.12924444,0.16155556,
    0.19386667,0.22617778,0.25848889,0.29080000,0.32311111,0.35542222,
    0.38773333,0.42004444,0.45235556,0.48466667,
x(321) =0.00000000,0.03231111,0.06462222,0.09693333,0.12924444,0.16155556,
    0.19386667,0.22617778,0.25848889,0.29080000,0.32311111,0.35542222,
    0.38773333,0.42004444,0.45235556,0.48466667,
x(337) =0.00000000,0.03231111,0.06462222,0.09693333,0.12924444,0.16155556,
    0.19386667,0.22617778,0.25848889,0.29080000,0.32311111,0.35542222,
    0.38773333,0.42004444,0.45235556,0.48466667,
qmpy(1)=1.0,2.0,3.0,4.0,5.0,6.118,6.118,
    5.436,5.436,
    6.069,6.069,
    5.565,5.565,
    3*5.726,
    7.0,8.0,9.0,10.0,2*10.644,
    10.504,10.504,
    10.046,10.046,
    9.0,8.0,6.654,6.654,
    7.0,8.0,8.646,8.646,
    8.864,8.864,
    8.756,8.756,
    3*7.982,
    7.301,6.619,6.619,
    5.848,5.076,5.076,
    5.246,5.246,
    6.292,6.292,
    5.571,5.571,
    5.321,5.321,
    3*5.400,
    5.152,5.152,
    5.095,5.095,
    4.671,4.671,
    4.658,4.658,
    4.966,4.966,
    5.292,5.292,
    3*4.450,
    4.475,4.475,
    5.478,3*6.383,
    3*5.658,
    5.0,4.0,3.0,2.0,1.0,0.004,0.004,
rc=0.0,
roughc=26.0e-6,
roughf=72.4e-6,
rsntr=220.0,
sgapf=31.0,
slim=0.10,
thkcld=0.025725,
thkgap=0.001475,
ProblemTime=0.1,0.2,0.3,0.4,0.5,0.6,48.4,
    48.5,61.2,
    61.3,83.4,
    83.5,97.5,
    97.6,126.2,154.9,
```

```
            155.0,155.1,155.2,155.3,155.4,182.3,
            182.4,203.3,
            203.4,239.7,
            239.8,239.9,240.0,258.9,
            259.0,259.1,259.2,261.4,
            261.5,284.3,
            284.4,326.4,
            326.5,354.5,382.6,
            382.7,382.8,416.6,
            416.7,416.8,430.6,
            430.7,450.1,
            450.2,476.9,
            477.0,524.2,
            524.3,565.1,
            565.2,590.1,615.0,
            615.1,620.0,
            620.1,623.4,
            623.5,642.1,
            642.2,655.1,
            655.2,687.0,
            687.1,709.1,
            709.2,734.1,759.0,
            759.1,798.7,
            798.8,798.9,823.3,848.1,
            848.2,876.5,904.1,
            904.2,904.3,904.4,904.5,904.6,904.7,904.8,
tsint=3227.0,
totl=0.48466667,
tw (1) =209.5,263.8,318.1,372.4,426.6,2*501.1,
    2*465.6,
    2*497.4,
    2*471.6,
    3*478.8,
    540.2,588.3,636.5,684.7,2*715.7,
    2*708.0,
    2*685.0,
    634.4,586.1,2*521.0,
    537.6,585.5,2*616.5,
    2*626.4,
    2*620.0,
    3*581.2,
    547.5,2*513.7,
    474.9,2*436.1,
    2*443.3,
    2*493.6,
    2*456.8,
    2*441.9,
    3*443.3,
    2*430.0,
    2*426.9,
    2*405.7,
    2*404.0,
    2*416.8,
    2*429.8,
    3*386.6,
    2*384.1,
    427.8,3*467.2,
```

```
        3*428.3,
        426.6,372.4,318.1,263.8,209.5,2*110.2,
    vs=8.5,
$end
$frpmox
    enrpu39=93.845367,
    enrpu40= 6.009014,
    enrpu41= 0.122010,
    enrpu42= 0.023609,
$end
```


ATR Phase IV, Capsule 5, Pin 8

* GOESINS:

FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED', CARRIAGE CONTROL='NONE'
*

* GOESOUTS:

FILE06='outapt4_5.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='stripf. 4 _5', STATUS='UNKNOWN', FORM='FORMATTED', CARRIAGE CONTROL='LIST'
/**)
ATR MOX Experiment: Phase IV, Capsule 5/ Fuel Pin 8 (March 2005)
\$frpen
im=114,
na=15,
ngasr=45,
$\mathrm{nr}=17$,
\$end
\$frpcon
crephr=10.0,
catexf=0.05,
cldwks=0.2,
comp $=5.0037$,
$\mathrm{cpl}=0.813$,
crdt $=0.0$,
crdtr=0.0,
dco=0.38065,
den=94.5,
deng=0.5,
dishsd=0.0491,
d spg=0.30,
dspgw=0.030,
enrch=0.266457,
fa=1.0,
fgpav=11.1,
flux (1) $=16 * 0.5 e 12$,
fotmtl=2.0,
gadoln=0.0,
go (1) $=114 * 0.0$,
hdish=0.0082,
hplt=0.387733,
icm=4,
icor=1,
idxgas=1,
imox=1,
imswch=0,
iplant=-2,
iq=0,
jdlpr=0,
jn=22*16,
jst $=11 * 1,5 * 2,7 * 3,10 * 4,3 * 5,6 * 6,4 * 7,5 * 8,4 * 9,3 * 10,10 * 11,5 * 12$,
$2 * 13,4 * 14,3 * 15,3 * 16,3 * 17,3 * 18,4 * 19,6 * 20,4 * 21,9 * 22$,
nplot=1,
nsp=1,
nunits=1,
p2 (1) $=114 * 12.5$,
pitch=0.38135,
ppmh20=1.0,
ppmn2 $=40.0$,
qend=0.1,
qf(1) $=1.27328,1.02268,0.98958,0.97840,0.97238,0.96974,0.96937,0.96937$, $0.97012,0.97050,0.97125,0.97238,0.97643,0.98868,1.03560,1.21372$,
$q f(17)=1.24673,1.01992,0.98703,0.97747,0.97299,0.97103,0.97075,0.97075$, $0.97131,0.97159,0.97215,0.97299,0.97773,0.99079,1.03704,1.22625$, $q f(33)=1.19758,1.01479,0.98230,0.97576,0.97412,0.97340,0.97330,0.97330$, $0.97350,0.97361,0.97381,0.97412,0.98013,0.99468,1.03969,1.24943$,
$q f(49)=1.13645,1.00995,0.98340,0.97940,0.97940,0.97940,0.97940,0.97940$, $0.97940,0.97940,0.97940,0.97940,0.98427,0.99630,1.03482,1.21683$,
$q f(65)=1.11315,1.00862,0.98610,0.98269,0.98269,0.98269,0.98269,0.98269$, $0.98269,0.98269,0.98269,0.98269,0.98622,0.99587,1.03028,1.18429$, $q f(81)=1.06691,1.00596,0.99148,0.98921,0.98921,0.98921,0.98921,0.98921$, $0.98921,0.98921,0.98921,0.98921,0.99011,0.99502,1.02128,1.11969$, $q f(97)=1.04414,1.00341,0.99358,0.99224,0.99236,0.99236,0.99236,0.99236$, $0.99236,0.99236,0.99236,0.99236,0.99236,0.99536,1.01693,1.09029$,
qf (113) $=1.01960,0.99761,0.99451,0.99507,0.99563,0.99563,0.99563,0.99563$, $0.99563,0.99563,0.99563,0.99563,0.99563,0.99760,1.01244,1.06455$, $\operatorname{qf}(129)=1.00568,0.99432,0.99504,0.99667,0.99749,0.99749,0.99749,0.99749$, $0.99749,0.99749,0.99749,0.99749,0.99749,0.99888,1.00989,1.04994$,
$q f(145)=0.99364,0.99148,0.99549,0.99806,0.99909,0.99909,0.99909,0.99909$, $0.99909,0.99909,0.99909,0.99909,0.99909,0.99998,1.00768,1.03732$,
qf (161) $=0.97358,0.98674,0.99626,1.00038,1.00176,1.00176,1.00176,1.00176$, $1.00176,1.00176,1.00176,1.00176,1.00176,1.00181,1.00401,1.01627$,
$q f(177)=0.97049,0.98544,0.99569,1.00032,1.00208,1.00262,1.00280,1.00298$, $1.00298,1.00292,1.00274,1.00250,1.00202,1.00161,1.00235,1.01145$,
$\operatorname{qf}(193)=0.96872,0.98449,0.99512,1.00014,1.00223,1.00326,1.00361,1.00395$, $1.00395,1.00384,1.00349,1.00304,1.00212,1.00132,1.00101,1.00812$,
qf (209) $=0.96729,0.98372,0.99467,0.99999,1.00236,1.00378,1.00426,1.00474$, $1.00474,1.00458,1.00410,1.00347,1.00220,1.00108,0.99993,1.00544$, $q f(225)=0.96464,0.98230,0.99382,0.99972,1.00258,1.00475,1.00548,1.00620$, $1.00620,1.00596,1.00523,1.00427,1.00234,1.00065,0.99793,1.00048$,
$q f(241)=1.06545,1.06131,1.05661,1.05037,1.04353,1.03497,1.02568,1.01449$, $1.00287,0.99121,0.97834,0.96395,0.94933,0.93351,0.91569,0.89082$, $q f(257)=1.06881,1.06381,1.05859,1.05193,1.04476,1.03579,1.02626,1.01458$, $1.00273,0.99059,0.97740,0.96279,0.94751,0.93121,0.91301,0.88926$, $\operatorname{qf}(273)=1.07167,1.06584,1.06002,1.05286,1.04526,1.03594,1.02610,1.01418$, $1.00220,0.98979,0.97651,0.96186,0.94649,0.93013,0.91212,0.88974$, $\operatorname{qf}(289)=1.07349,1.06698,1.06047,1.05279,1.04466,1.03512,1.02490,1.01314$, $1.00116,0.98884,0.97580,0.96139,0.94671,0.93089,0.91388,0.89304$, $\operatorname{qf}(305)=1.07640,1.06880,1.06120,1.05268,1.04370,1.03380,1.02298,1.01148$, $0.99951,0.98732,0.97466,0.96063,0.94706,0.93211,0.91670,0.89832$, $q f(321)=1.07764,1.06958,1.06151,1.05263,1.04329,1.03324,1.02216,1.01077$, $0.99881,0.98667,0.97418,0.96030,0.94721,0.93263,0.91791,0.90057$, $q f(337)=1.07999,1.07105,1.06210,1.05254,1.04251,1.03217,1.02062,1.00943$, $0.99748,0.98545,0.97326,0.95969,0.94749,0.93362,0.92018,0.90483$,

A. 144

$x(1)=0.00000000,0.03231111,0.06462222,0.09693333,0.12924444,0.16155556$, $0.19386667,0.22617778,0.25848889,0.29080000,0.32311111,0.35542222$, $0.38773333,0.42004444,0.45235556,0.48466667$,
$x(17)=0.00000000,0.03231111,0.06462222,0.09693333,0.12924444,0.16155556$, $0.19386667,0.22617778,0.25848889,0.29080000,0.32311111,0.35542222$, $0.38773333,0.42004444,0.45235556,0.48466667$,
$x(33)=0.00000000,0.03231111,0.06462222,0.09693333,0.12924444,0.16155556$, $0.19386667,0.22617778,0.25848889,0.29080000,0.32311111,0.35542222$, $0.38773333,0.42004444,0.45235556,0.48466667$,
$x(49)=0.00000000,0.03231111,0.06462222,0.09693333,0.12924444,0.16155556$, $0.19386667,0.22617778,0.25848889,0.29080000,0.32311111,0.35542222$, $0.38773333,0.42004444,0.45235556,0.48466667$,
$x(65)=0.00000000,0.03231111,0.06462222,0.09693333,0.12924444,0.16155556$, $0.19386667,0.22617778,0.25848889,0.29080000,0.32311111,0.35542222$, $0.38773333,0.42004444,0.45235556,0.48466667$,
$x(81)=0.0000000,0.03231111,0.06462222,0.09693333,0.12924444,0.16155556$, $0.19386667,0.22617778,0.25848889,0.29080000,0.32311111,0.35542222$, $0.38773333,0.42004444,0.45235556,0.48466667$,
$x(97)=0.00000000,0.03231111,0.06462222,0.09693333,0.12924444,0.16155556$, $0.19386667,0.22617778,0.25848889,0.29080000,0.32311111,0.35542222$, $0.38773333,0.42004444,0.45235556,0.48466667$,
$x(113)=0.00000000,0.03231111,0.06462222,0.09693333,0.12924444,0.16155556$, $0.19386667,0.22617778,0.25848889,0.29080000,0.32311111,0.35542222$, $0.38773333,0.42004444,0.45235556,0.48466667$,
$x(129)=0.00000000,0.03231111,0.06462222,0.09693333,0.12924444,0.16155556$, $0.19386667,0.22617778,0.25848889,0.29080000,0.32311111,0.35542222$, $0.38773333,0.42004444,0.45235556,0.48466667$,
$x(145)=0.00000000,0.03231111,0.06462222,0.09693333,0.12924444,0.16155556$, $0.19386667,0.22617778,0.25848889,0.29080000,0.32311111,0.35542222$, $0.38773333,0.42004444,0.45235556,0.48466667$,
$x(161)=0.0000000,0.03231111,0.06462222,0.09693333,0.12924444,0.16155556$, $0.19386667,0.22617778,0.25848889,0.29080000,0.32311111,0.35542222$, $0.38773333,0.42004444,0.45235556,0.48466667$,
$x(177)=0.00000000,0.03231111,0.06462222,0.09693333,0.12924444,0.16155556$, $0.19386667,0.22617778,0.25848889,0.29080000,0.32311111,0.35542222$, $0.38773333,0.42004444,0.45235556,0.48466667$,
$x(193)=0.00000000,0.03231111,0.06462222,0.09693333,0.12924444,0.16155556$, $0.19386667,0.22617778,0.25848889,0.29080000,0.32311111,0.35542222$, $0.38773333,0.42004444,0.45235556,0.48466667$,
$x(209)=0.00000000,0.03231111,0.06462222,0.09693333,0.12924444,0.16155556$, $0.19386667,0.22617778,0.25848889,0.29080000,0.32311111,0.35542222$, $0.38773333,0.42004444,0.45235556,0.48466667$,
$x(225)=0.00000000,0.03231111,0.06462222,0.09693333,0.12924444,0.16155556$, $0.19386667,0.22617778,0.25848889,0.29080000,0.32311111,0.35542222$, $0.38773333,0.42004444,0.45235556,0.48466667$,
$x(241)=0.00000000,0.03231111,0.06462222,0.09693333,0.12924444,0.16155556$, $0.19386667,0.22617778,0.25848889,0.29080000,0.32311111,0.35542222$, $0.38773333,0.42004444,0.45235556,0.48466667$,
$x(257)=0.00000000,0.03231111,0.06462222,0.09693333,0.12924444,0.16155556$, $0.19386667,0.22617778,0.25848889,0.29080000,0.32311111,0.35542222$, $0.38773333,0.42004444,0.45235556,0.48466667$,
$x(273)=0.00000000,0.03231111,0.06462222,0.09693333,0.12924444,0.16155556$, $0.19386667,0.22617778,0.25848889,0.29080000,0.32311111,0.35542222$, $0.38773333,0.42004444,0.45235556,0.48466667$,
$x(289)=0.00000000,0.03231111,0.06462222,0.09693333,0.12924444,0.16155556$, $0.19386667,0.22617778,0.25848889,0.29080000,0.32311111,0.35542222$, $0.38773333,0.42004444,0.45235556,0.48466667$,

```
x(305) =0.00000000,0.03231111,0.06462222,0.09693333,0.12924444,0.16155556,
            0.19386667,0.22617778,0.25848889,0.29080000,0.32311111,0.35542222,
    0.38773333,0.42004444,0.45235556,0.48466667,
x(321) =0.00000000,0.03231111,0.06462222,0.09693333,0.12924444,0.16155556,
            0.19386667,0.22617778,0.25848889,0.29080000,0.32311111,0.35542222,
    0.38773333,0.42004444,0.45235556,0.48466667,
x(337) =0.00000000,0.03231111,0.06462222,0.09693333,0.12924444,0.16155556,
    0.19386667,0.22617778,0.25848889,0.29080000,0.32311111,0.35542222,
    0.38773333,0.42004444,0.45235556,0.48466667,
qmpy(1)=1.0,2.0,3.0,4.0,5.0,6.386,6.386,
            5.892,5.892,
            6.328,6.328,
            5.873,5.873,
            3*5.823,
            7.0,2*7.988,
            7.887,7.887,
            7.719,7.719,
            6.5,5.338,5.338,
            6.0,6.921,6.921,
            7.104,7.104,
                        6.920,6.920,
                        3*6.500,
                        6.263,6.263,
                        5.070,5.070,
                        5.187,5.187,
                        5.827,5.827,
                        5.346,5.346,
                        5.098,5.098,
                        3*5.246,
                        4.170,4.170,
                        3.752,3.752,
                        3*4.038,
                        3.815,3.815,
                        3.784,3.784,
                        3.606,3.606,
                        3.504,3.504,
                        3.755,3.755,
                        4.082,4.082,
                        3*3.497,
                        3.539,3.539,
                        4.5,3*5.269,
        3*4.753,
        3*5.527,
        3*4.641,
        3*4.748,
        4.491,4.491,
        3.878,3.878,
        3.743,3.743,
        3.776,3.776,
        3.712,3.712,
        3.476,3.476,
        3.350,3.350,
        3.429,3.429,
        3*3.352,
        2.0,1.0,0.004,0.004,
rc=0.0,
roughc=26.0e-6,
```

A. 146

```
roughf=72.4e-6,
rsntr=220.0,
sgapf=31.0,
slim=0.10,
thkcld=0.025725,
thkgap=0.001475,
ProblemTime=0.1,0.2,0.3,0.4,0.5,0.6,48.4,
    48.5,61.2,
    61.3,83.4,
    83.5,97.5,
    97.6,126.2,154.9,
    155.0,155.1,182.3,
    182.4,203.3,
    203.4,239.7,
    239.8,239.9,258.9,
    259.0,259.1,261.4,
    261.5,284.3,
    284.4,326.4,
    326.5,354.5,382.6,
    382.7,416.6,
    416.7,430.6,
    430.7,450.1,
    450.2,476.9,
    477.0,524.2,
    524.3,565.1,
    565.2,590.1,615.0,
    615.1,657.2,
    657.3,670.6,
    670.7,699.4,728.1,
    728.2,733.1,
    733.2,736.5,
    736.6,755.2,
    755.3,768.2,
    768.3,800.1,
    800.2,822.2,
    822.3,847.3,872.1,
    872.2,911.8,
    911.9,912.0,936.8,961.2,
    961.3,989.2,1017.2,
    1017.3,1042.2,1067.5,
    1067.6,1097.5,1127.4,
    1127.5,1152.4,1179.1,
    1179.2,1222.9,
    1223.0,1240.9,
    1241.0,1274.4,
    1274.5,1304.4,
    1304.5,1318.9,
    1319.0,1367.4,
    1367.5,1390.8,
    1390.9,1411.5,
    1411.6,1436.8,1461.8,
    1461.9,1462.0,1462.1,1465.0,
tsint=3227.0,
totl=0.48466667,
tw(1) =209.5,263.8,318.1,372.4,426.6,2*515.1,
    2*490.1,
    2*511.8,
```

```
            2*488.7,
            3*485.8,
            544.1,2*593.1,
            2*588.2,
            2*579.5,
            518.1,2*459.6,
            492.8,2*539.0,
            2*548.1,
            2*538.7,
            3*516.7,
            2*503.8,
            2*442.7,
            2*448.1,
            2*480.1,
            2*455.0,
                    2*441.1,
                    3*446.8,
                    2*390.7,
                    2*368.0,
                    3*381.6,
                    2*369.6,
                    2*367.9,
                    2*358.2,
                    2*352.4,
                    2*364.7,
                    2*380.8,
                    3*350.0,
                    2*350.8,
                    398.0,3*435.8,
                    3*409.4,
                    3*444.8,
                    3*400.5,
                    3*403.9,
                    2*389.6,
                    2*359.7,
                    2*352.6,
                    2*353.4,
                    2*350.0,
                    2*337.9,
                    2*331.0,
                    2*334.5,
                    3*330.3,
                    263.8,209.5,2*110.2,
    vs=8.5,
$end
$frpmox
    enrpu39=93.845367,
    enrpu40= 6.009014,
    enrpu41= 0.122010,
    enrpu42= 0.023609,
$end
```


ATR Phase IV, Capsule 6, Pin 9

* GOESINS:

FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED', CARRIAGE CONTROL='NONE'
*

```
* GOESOUTS:
FILE06='outapt4 6.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='stripf.4_6', STATUS='UNKNOWN', FORM='FORMATTED',
            CARRIAGE CONTROL='LIST'
/************************************************************************
    ATR MOX Experiment: Phase IV, Capsule 6 / Fuel Pin 9 (March 2005)
$frpon
        im=107,
        na=15,
        ngasr=45,
        nr=17,
$end
$frpcon
    crephr=10.0,
    catexf=0.05,
    cldwks=0.2,
    comp=5.0037,
    cpl=0.800,
    crdt = 0.0,
    crdtr=0.0,
    dco=0.38065,
    den=94.5,
    deng=0.5,
    dishsd=0.0491,
    dspg=0.30,
    dspgw=0.030,
    enrch=0.266457,
    fa=1.0,
    fgpav=11.1,
    flux(1)=16*0.5e12,
    fotmtl=2.0,
    gadoln=0.0,
    go(1)=107*0.0,
    hdish=0.0082,
    hplt=0.3886,
    icm=4,
    icor=1,
    idxgas=1,
    imox=1,
    imswch=0,
    iplant=-2,
    iq=0,
    jdlpr=0,
    jn=22*16,
    jst=12* 1,9*2,4* 3, 3* 4, 8*5, 2* 6, 2* 7, 3* 8, 4* 9, 3* 10, 10* 11,5* 12,
        2*13,4*14,3*15,3*16,3*17,3*18,4*19,6*20,4*21,10*22,
    nplot=1,
    nsp=1,
    nunits=1,
    p2(1)=107*12.5,
    pitch=0.38135,
    ppmh2o=1.0,
    ppmn2=40.0,
    qend=0.1,
    qf(1) =1.38500,1.08265,1.04509,1.01927,1.00283,0.99109,0.98077,0.97231,
        0.96433,0.95823,0.95024,0.94180,0.93241,0.92443,0.93288,1.21833,
    qf(17)=1.32995,1.08418,1.04909,1.02631,1.01067,0.99766,0.98585,0.97592,
```

$0.96624,0.95845,0.95016,0.94117,0.93263,0.92715,0.94687,1.16531$, qf (33) $=1.30682,1.08483,1.05078,1.02928,1.01396,1.00042,0.98798,0.97743$, $0.96704,0.95854,0.95013,0.94091,0.93273,0.92829,0.95275,1.14304$, $q f(49)=1.28313,1.08549,1.05250,1.03231,1.01734,1.00325,0.99017,0.97899$, $0.96786,0.95864,0.95009,0.94064,0.93282,0.92947,0.95877,1.12023$, $q f(65)=1.23086,1.08797,1.05831,1.03880,1.02374,1.00886,0.99583,0.98380$, $0.97223,0.96226,0.95309,0.94266,0.93399,0.93159,0.95654,1.06977$, $q f(81)=1.20081,1.08956,1.06196,1.04250,1.02727,1.01199,0.99922,0.98678$, $0.97513,0.96486,0.95528,0.94422,0.93481,0.93275,0.95289,1.04073$, $q f(97)=1.17723,1.09080,1.06482,1.04541,1.03004,1.01445,1.00187,0.98912$, $0.97741,0.96691,0.95700,0.94545,0.93545,0.93365,0.95003,1.01795$, $q f(113)=1.15728,1.09185,1.06724,1.04786,1.03238,1.01652,1.00412,0.99110$, $0.97934,0.96864,0.95846,0.94649,0.93599,0.93442,0.94761,0.99868$, $\operatorname{qf}(129)=1.04493,1.00360,0.99355,0.99215,0.99226,0.99226,0.99226,0.99226$, $0.99226,0.99226,0.99226,0.99226,0.99226,0.99528,1.01708,1.09112$, $q f(145)=1.02558,0.99903,0.99428,0.99438,0.99484,0.99484,0.99484,0.99484$, $0.99484,0.99484,0.99484,0.99484,0.99484,0.99706,1.01353,1.07082$, $q f(161)=1.08360,1.06592,1.05601,1.04633,1.03731,1.02720,1.01746,1.00678$, $0.99566,0.98548,0.97422,0.96108,0.94935,0.93961,0.93251,0.92658$, $q f(177)=1.06172,1.05602,1.05119,1.04509,1.03850,1.03060,1.02179,1.01206$, $1.00118,0.99125,0.97966,0.96620,0.95416,0.94133,0.92757,0.90510$, $q f(193)=1.05415,1.05292,1.04994,1.04512,1.03939,1.03222,1.02371,1.01418$, $1.00333,0.99333,0.98151,0.96785,0.95545,0.94124,0.92471,0.89605$, $\operatorname{qf}(209)=1.05642,1.05461,1.05128,1.04617,1.04022,1.03277,1.02411,1.01424$, $1.00323,0.99291,0.98087,0.96707,0.95423,0.93969,0.92290,0.89500$, $q f(225)=1.06017,1.05739,1.05349,1.04792,1.04160,1.03369,1.02476,1.01434$, $1.00308,0.99220,0.97982,0.96577,0.95219,0.93712,0.91991,0.89326$,
$q f(241)=0.96309,0.98147,0.99333,0.99956,1.00271,1.00531,1.00619,1.00706$, $1.00706,1.00677,1.00589,1.00474,1.00242,1.00039,0.99677,0.99757$, $q f(257)=0.95972,0.97967,0.99225,0.99922,1.00300,1.00654,1.00773,1.00892$, $1.00892,1.00852,1.00733,1.00576,1.00260,0.99984,0.99422,0.99126$, $q f(273)=0.95887,0.97926,0.99187,0.99900,1.00300,1.00699,1.00833,1.00967$, $1.00967,1.00922,1.00789,1.00611,1.00255,0.99944,0.99278,0.98955$, qf $(289)=0.96461,0.98252,0.99325,0.99905,1.00225,1.00545,1.00652,1.00759$, $1.00759,1.00723,1.00616,1.00474,1.00190,0.99941,0.99408,0.99990$, $q f(305)=0.97332,0.98745,0.99536,0.99913,1.00112,1.00311,1.00377,1.00444$, $1.00444,1.00421,1.00355,1.00267,1.00090,0.99935,0.99605,1.01558$, $q f(321)=0.97702,0.98954,0.99625,0.99917,1.00064,1.00211,1.00261,1.00310$, $1.00310,1.00294,1.00244,1.00179,1.00048,0.99933,0.99688,1.02223$, $q f(337)=0.98382,0.99339,0.99789,0.99923,0.99976,1.00028,1.00046,1.00064$, $1.00064,1.00058,1.00040,1.00017,0.99970,0.99929,0.99841,1.03448$, $x(1)=0.00000000,0.03238333,0.06476667,0.09715000,0.12953333,0.16191667$, $0.19430000,0.22668333,0.25906667,0.29145000,0.32383333,0.35621667$, $0.38860000,0.42098333,0.45336667,0.48575000$,
$x(17)=0.00000000,0.03238333,0.06476667,0.09715000,0.12953333,0.16191667$, $0.19430000,0.22668333,0.25906667,0.29145000,0.32383333,0.35621667$, $0.38860000,0.42098333,0.45336667,0.48575000$,
$x(33)=0.00000000,0.03238333,0.06476667,0.09715000,0.12953333,0.16191667$, $0.19430000,0.22668333,0.25906667,0.29145000,0.32383333,0.35621667$, $0.38860000,0.42098333,0.45336667,0.48575000$,
$x(49)=0.00000000,0.03238333,0.06476667,0.09715000,0.12953333,0.16191667$, $0.19430000,0.22668333,0.25906667,0.29145000,0.32383333,0.35621667$, $0.38860000,0.42098333,0.45336667,0.48575000$,
$x(65)=0.00000000,0.03238333,0.06476667,0.09715000,0.12953333,0.16191667$, $0.19430000,0.22668333,0.25906667,0.29145000,0.32383333,0.35621667$, $0.38860000,0.42098333,0.45336667,0.48575000$,
$x(81)=0.00000000,0.03238333,0.06476667,0.09715000,0.12953333,0.16191667$,
$0.19430000,0.22668333,0.25906667,0.29145000,0.32383333,0.35621667$,
$0.38860000,0.42098333,0.45336667,0.48575000$,
$x(97)=0.00000000,0.03238333,0.06476667,0.09715000,0.12953333,0.16191667$,
$0.19430000,0.22668333,0.25906667,0.29145000,0.32383333,0.35621667$,
$0.38860000,0.42098333,0.45336667,0.48575000$,
$x(113)=0.00000000,0.03238333,0.06476667,0.09715000,0.12953333,0.16191667$,
$0.19430000,0.22668333,0.25906667,0.29145000,0.32383333,0.35621667$,
$0.38860000,0.42098333,0.45336667,0.48575000$,
$x(129)=0.00000000,0.03238333,0.06476667,0.09715000,0.12953333,0.16191667$,
$0.19430000,0.22668333,0.25906667,0.29145000,0.32383333,0.35621667$,
$0.38860000,0.42098333,0.45336667,0.48575000$,
$x(145)=0.00000000,0.03238333,0.06476667,0.09715000,0.12953333,0.16191667$,
$0.19430000,0.22668333,0.25906667,0.29145000,0.32383333,0.35621667$,
$0.38860000,0.42098333,0.45336667,0.48575000$,
$x(161)=0.00000000,0.03238333,0.06476667,0.09715000,0.12953333,0.16191667$,
$0.19430000,0.22668333,0.25906667,0.29145000,0.32383333,0.35621667$,
$0.38860000,0.42098333,0.45336667,0.48575000$,
$x(177)=0.00000000,0.03238333,0.06476667,0.09715000,0.12953333,0.16191667$,
$0.19430000,0.22668333,0.25906667,0.29145000,0.32383333,0.35621667$,
$0.38860000,0.42098333,0.45336667,0.48575000$,
$x(193)=0.00000000,0.03238333,0.06476667,0.09715000,0.12953333,0.16191667$,
$0.19430000,0.22668333,0.25906667,0.29145000,0.32383333,0.35621667$,
$0.38860000,0.42098333,0.45336667,0.48575000$,
$x(209)=0.00000000,0.03238333,0.06476667,0.09715000,0.12953333,0.16191667$,
$0.19430000,0.22668333,0.25906667,0.29145000,0.32383333,0.35621667$,
$0.38860000,0.42098333,0.45336667,0.48575000$,
$x(225)=0.00000000,0.03238333,0.06476667,0.09715000,0.12953333,0.16191667$,
$0.19430000,0.22668333,0.25906667,0.29145000,0.32383333,0.35621667$,
$0.38860000,0.42098333,0.45336667,0.48575000$,
$x(241)=0.00000000,0.03238333,0.06476667,0.09715000,0.12953333,0.16191667$,
$0.19430000,0.22668333,0.25906667,0.29145000,0.32383333,0.35621667$,
$0.38860000,0.42098333,0.45336667,0.48575000$,
$x(257)=0.00000000,0.03238333,0.06476667,0.09715000,0.12953333,0.16191667$,
$0.19430000,0.22668333,0.25906667,0.29145000,0.32383333,0.35621667$,
$0.38860000,0.42098333,0.45336667,0.48575000$,
$x(273)=0.00000000,0.03238333,0.06476667,0.09715000,0.12953333,0.16191667$,
$0.19430000,0.22668333,0.25906667,0.29145000,0.32383333,0.35621667$,
$0.38860000,0.42098333,0.45336667,0.48575000$,
$x(289)=0.00000000,0.03238333,0.06476667,0.09715000,0.12953333,0.16191667$,
$0.19430000,0.22668333,0.25906667,0.29145000,0.32383333,0.35621667$,
$0.38860000,0.42098333,0.45336667,0.48575000$,
$x(305)=0.00000000,0.03238333,0.06476667,0.09715000,0.12953333,0.16191667$,
$0.19430000,0.22668333,0.25906667,0.29145000,0.32383333,0.35621667$,
$0.38860000,0.42098333,0.45336667,0.48575000$,
$x(321)=0.00000000,0.03238333,0.06476667,0.09715000,0.12953333,0.16191667$,
$0.19430000,0.22668333,0.25906667,0.29145000,0.32383333,0.35621667$,
$0.38860000,0.42098333,0.45336667,0.48575000$,
$x(337)=0.00000000,0.03238333,0.06476667,0.09715000,0.12953333,0.16191667$,
$0.19430000,0.22668333,0.25906667,0.29145000,0.32383333,0.35621667$,
$0.38860000,0.42098333,0.45336667,0.48575000$,
qmpy $(1)=1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,2 * 8.653$,
8.539,8.539,
8.427,8.427,
$7.5,6.6,5.742,5.742$,
6.6,7.469,7.469,
7.636,7.636,
7.392,7.392,

```
    3*7.040,
    6.494,6.494,
    5.081,5.081,
    5.487,5.487,
    6.182,6.182,
    5.702,5.702,
    5.580,5.580,
    3*5.672,
    6.672,6.672,
    6.193,6.193,
    3*6.134,
    5.572,5.572,
    5.492,5.492,
    5.183,5.183,
    5.038,5.038,
    5.342,5.342,
    5.700,5.700,
    3*4.752,
    4.741,4.741,
    5.4,3*6.300,
    3*5.795,
    3*6.599,
    3*5.121,
    3*5.446,
    4.940,4.940,
    4.281,4.281,
    3.981,3.981,
    4.154,4.154,
    3.873,3.873,
    3.605,3.605,
    3.610,3.610,
    3.508,3.508,
    3*3.594,
    3.0,2.0,1.0,0.004,0.004,
rc=0.0,
roughc=26.0e-6,
roughf=72.4e-6,
rsntr=220.0,
sgapf=31.0,
slim=0.10,
thkcld=0.025725,
thkgap=0.001475,
ProblemTime=0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,27.4,
    27.5,48.4,
    48.5,84.8,
    84.9,85.0,85.1,104.0,
    104.1,104.2,106.5,
    106.6,129.4,
    129.5,171.5,
    171.6,199.6,227.7,
    227.8,261.7,
    261.8,275.7,
    275.8,295.2,
    295.3,322.0,
    322.1,369.3,
    369.4,410.2,
    410.3,435.3,460.1,
```

```
            460.2,502.3,
            502.4,515.7,
            515.8,544.5,573.2,
            573.3,578.2,
            578.3,581.6,
            581.7,600.3,
            600.4,613.3,
            613.4,645.2,
            645.3,667.3,
            667.4,692.3,717.2,
            717.3,756.9,
            757.0,757.1,781.9,806.3,
            806.4,834.3,862.3,
            862.4,887.3,912.6,
            912.7,942.6,972.5,
            972.6,998.5,1024.2,
            1024.3,1068.0,
            1068.1,1086.0,
            1086.1,1119.5,
            1119.6,1149.5,
            1149.6,1164.0,
            1164.1,1212.5,
            1212.6,1235.9,
            1236.0,1256.6,
            1256.7,1281.8,1306.9,
            1307.0,1307.1,1307.2,1307.3,1310.0,
tsint=3227.0,
totl=0.48575,
tw (1) =209.5,263.8,318.1,372.4,426.6,480.9,535.2,589.5,2*627.2,
    2*621.4,
    2*615.6,
    569.3,519.4,2*481.7,
    524.5,2*568.0,
    2*576.3,
    2*563.7,
    3*545.3,
    2*517.0,
    2*444.6,
    2*464.8,
    2*499.3,
    2*473.8,
    2*466.0,
    3*468.7,
    2*515.8,
    2*490.9,
    3*485.8,
    2*456.5,
    2*452.2,
    2*436.4,
    2*428.4,
    2*442.1,
    2*458.0,
    3*409.8,
    2*407.3,
    437.9,3*479.8,
    3*453.6,
    3*488.4,
```

```
            3*417.3,
            3*430.6,
            2*405.5,
            2*373.6,
            2*358.7,
            2*366.0,
            2*352.1,
            2*338.6,
            2*338.0,
            2*332.6,
            3*335.8,
            318.1,263.8,209.5,2*110.2,
    vs=8.5,
$end
$frpmox
    enrpu39=93.845367,
    enrpu40= 6.009014,
    enrpu41= 0.122010,
    enrpu42=0.023609,
$end
```


ATR Phase IV, Capsule 12, Pin 15

* GOESINS:

FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED', CARRIAGE CONTROL='NONE'
*

* GOESOUTS:

FILE06='outapt4_12.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='stripf. 412 ', STATUS='UNKNOWN', FORM='FORMATTED', CARRIAGE CONTROL='LIST'

ATR MOX Experiment: Phase IV, Capsule 12 / Fuel Pin 15 (March 2005)
\$frpen im=107, na=15, ngasr=45, $\mathrm{nr}=17$,
\$end
\$frpcon
crephr=10.0, catexf=0.05, cldwks=0.2, comp $=5.0037$, cpl=0.834, crdt $=0.0$, crdtr=0.0, $\mathrm{dco}=0.38065$, den=95.2, deng=0.5, dishsd=0.0496, dspg=0.30, dspgw=0.030, enrch=0.266457, fa=1.0,
fgpav=11.1, flux (1) $=16 * 0.5 \mathrm{e} 12$, fotmtl=2.0,

qf (273) $=0.95917,0.97943,0.99194,0.99900,1.00296,1.00691,1.00824,1.00956$, $1.00956,1.00912,1.00780,1.00604,1.00252,0.99944,0.99285,0.99009$, $\operatorname{qf}(289)=0.96492,0.98269,0.99333,0.99905,1.00221,1.00537,1.00642,1.00748$, $1.00748,1.00713,1.00607,1.00467,1.00186,0.99941,0.99415,1.00044$, $q f(305)=0.97378,0.98771,0.99547,0.99914,1.00106,1.00298,1.00363,1.00427$, $1.00427,1.00406,1.00341,1.00256,1.00085,0.99935,0.99615,1.01640$, qf $(321)=0.97759,0.98986,0.99639,0.99917,1.00057,1.00196,1.00243,1.00289$, $1.00289,1.00274,1.00227,1.00165,1.00041,0.99933,0.99701,1.02326$, $q f(337)=0.98452,0.99379,0.99806,0.99924,0.99967,1.00010,1.00024,1.00038$, $1.00038,1.00034,1.00019,1.00000,0.99962,0.99929,0.99857,1.03573$,
$x(1)=0.00000000,0.03219444,0.06438889,0.09658333,0.12877778,0.16097222$, $0.19316667,0.22536111,0.25755556,0.28975000,0.32194444,0.35413889$, $0.38633333,0.41852778,0.45072222,0.48291667$,
$x(17)=0.00000000,0.03219444,0.06438889,0.09658333,0.12877778,0.16097222$, $0.19316667,0.22536111,0.25755556,0.28975000,0.32194444,0.35413889$, $0.38633333,0.41852778,0.45072222,0.48291667$,
$x(33)=0.00000000,0.03219444,0.06438889,0.09658333,0.12877778,0.16097222$, $0.19316667,0.22536111,0.25755556,0.28975000,0.32194444,0.35413889$, $0.38633333,0.41852778,0.45072222,0.48291667$,
$x(49)=0.00000000,0.03219444,0.06438889,0.09658333,0.12877778,0.16097222$, $0.19316667,0.22536111,0.25755556,0.28975000,0.32194444,0.35413889$, $0.38633333,0.41852778,0.45072222,0.48291667$,
$x(65)=0.00000000,0.03219444,0.06438889,0.09658333,0.12877778,0.16097222$, $0.19316667,0.22536111,0.25755556,0.28975000,0.32194444,0.35413889$, $0.38633333,0.41852778,0.45072222,0.48291667$,
$x(81)=0.00000000,0.03219444,0.06438889,0.09658333,0.12877778,0.16097222$, $0.19316667,0.22536111,0.25755556,0.28975000,0.32194444,0.35413889$, $0.38633333,0.41852778,0.45072222,0.48291667$,
$x(97)=0.00000000,0.03219444,0.06438889,0.09658333,0.12877778,0.16097222$, $0.19316667,0.22536111,0.25755556,0.28975000,0.32194444,0.35413889$, $0.38633333,0.41852778,0.45072222,0.48291667$,
$x(113)=0.00000000,0.03219444,0.06438889,0.09658333,0.12877778,0.16097222$, $0.19316667,0.22536111,0.25755556,0.28975000,0.32194444,0.35413889$, $0.38633333,0.41852778,0.45072222,0.48291667$,
$x(129)=0.00000000,0.03219444,0.06438889,0.09658333,0.12877778,0.16097222$, $0.19316667,0.22536111,0.25755556,0.28975000,0.32194444,0.35413889$, $0.38633333,0.41852778,0.45072222,0.48291667$,
$x(145)=0.00000000,0.03219444,0.06438889,0.09658333,0.12877778,0.16097222$, $0.19316667,0.22536111,0.25755556,0.28975000,0.32194444,0.35413889$, $0.38633333,0.41852778,0.45072222,0.48291667$,
$x(161)=0.00000000,0.03219444,0.06438889,0.09658333,0.12877778,0.16097222$, $0.19316667,0.22536111,0.25755556,0.28975000,0.32194444,0.35413889$, $0.38633333,0.41852778,0.45072222,0.48291667$,
$x(177)=0.00000000,0.03219444,0.06438889,0.09658333,0.12877778,0.16097222$, $0.19316667,0.22536111,0.25755556,0.28975000,0.32194444,0.35413889$, $0.38633333,0.41852778,0.45072222,0.48291667$,
$x(193)=0.00000000,0.03219444,0.06438889,0.09658333,0.12877778,0.16097222$, $0.19316667,0.22536111,0.25755556,0.28975000,0.32194444,0.35413889$, $0.38633333,0.41852778,0.45072222,0.48291667$,
$x(209)=0.00000000,0.03219444,0.06438889,0.09658333,0.12877778,0.16097222$, $0.19316667,0.22536111,0.25755556,0.28975000,0.32194444,0.35413889$, $0.38633333,0.41852778,0.45072222,0.48291667$,
$x(225)=0.00000000,0.03219444,0.06438889,0.09658333,0.12877778,0.16097222$, $0.19316667,0.22536111,0.25755556,0.28975000,0.32194444,0.35413889$, $0.38633333,0.41852778,0.45072222,0.48291667$,
$x(241)=0.00000000,0.03219444,0.06438889,0.09658333,0.12877778,0.16097222$, $0.19316667,0.22536111,0.25755556,0.28975000,0.32194444,0.35413889$,
A. 156

```
    0.38633333,0.41852778,0.45072222,0.48291667,
x(257) =0.00000000,0.03219444,0.06438889,0.09658333,0.12877778,0.16097222,
    0.19316667,0.22536111,0.25755556,0.28975000,0.32194444,0.35413889,
    0.38633333,0.41852778,0.45072222,0.48291667,
x(273) =0.00000000,0.03219444,0.06438889,0.09658333,0.12877778,0.16097222,
    0.19316667,0.22536111,0.25755556,0.28975000,0.32194444,0.35413889,
    0.38633333,0.41852778,0.45072222,0.48291667,
x(289) =0.00000000,0.03219444,0.06438889,0.09658333,0.12877778,0.16097222,
    0.19316667,0.22536111,0.25755556,0.28975000,0.32194444,0.35413889,
    0.38633333,0.41852778,0.45072222,0.48291667,
x(305) =0.00000000,0.03219444,0.06438889,0.09658333,0.12877778,0.16097222,
    0.19316667,0.22536111,0.25755556,0.28975000,0.32194444,0.35413889,
    0.38633333,0.41852778,0.45072222,0.48291667,
x(321) =0.00000000,0.03219444,0.06438889,0.09658333,0.12877778,0.16097222,
    0.19316667,0.22536111,0.25755556,0.28975000,0.32194444,0.35413889,
    0.38633333,0.41852778,0.45072222,0.48291667,
x(337) =0.00000000,0.03219444,0.06438889,0.09658333,0.12877778,0.16097222,
    0.19316667,0.22536111,0.25755556,0.28975000,0.32194444,0.35413889,
    0.38633333,0.41852778,0.45072222,0.48291667,
qmpy(1)=1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,2*8.713,
        8.589,8.589,
    8.471,8.471,
    7.5,6.6,5.769,5.769,
    6.6,7.544,7.544,
    7.674,7.674,
    7.608,7.608,
    3*7.164,
    6.604,6.604,
    5.239,5.239,
    5.458,5.458,
    6.194,6.194,
    5.759,5.759,
    5.672,5.672,
    3*5.759,
    6.775,6.775,
    6.144,6.144,
    3*6.326,
    5.628,5.628,
    5.591,5.591,
    5.251,5.251,
    5.170,5.170,
    5.349,5.349,
    5.689,5.689,
    3*4.799,
    4.826,4.826,
    5.4,3*6.302,
    3*5.880,
    3*6.666,
    3*5.198,
    3*5.501,
    5.058,5.058,
    4.399,4.399,
    4.115,4.115,
    4.296,4.296,
    4.119,4.119,
    3.765,3.765,
    3.646,3.646,
```

```
        3.615,3.615,
        3*3.660,
        3.0,2.0,1.0,0.004,0.004,
rc=0.0,
roughc=26.0e-6,
roughf=72.4e-6,
rsntr=220.0,
sgapf=31.0,
slim=0.10,
thkcld=0.025725,
thkgap=0.001475,
ProblemTime=0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,27.4,
    27.5,48.4,
    48.5,84.8,
    84.9,85.0,85.1,104.0,
    104.1,104.2,106.5,
    106.6,129.4,
    129.5,171.5,
    171.6,199.6,227.7,
    227.8,261.7,
    261.8,275.7,
    275.8,295.2,
    295.3,322.0,
    322.1,369.3,
    369.4,410.2,
    410.3,435.3,460.1,
    460.2,502.3,
    502.4,515.7,
    515.8,544.5,573.2,
    573.3,578.2,
    578.3,581.6,
    581.7,600.3,
    600.4,613.3,
    613.4,645.2,
    645.3,667.3,
    667.4,692.3,717.2,
    717.3,756.9,
    757.0,757.1,781.9,806.3,
    806.4,834.3,862.3,
    862.4,887.3,912.6,
    912.7,942.6,972.5,
    972.6,998.5,1024.2,
    1024.3,1068.0,
    1068.1,1086.0,
    1086.1,1119.5,
    1119.6,1149.5,
    1149.6,1164.0,
    1164.1,1212.5,
    1212.6,1235.9,
    1236.0,1256.6,
    1256.7,1281.8,1306.9,
    1307.0,1307.1,1307.2,1307.3,1310.0,
tsint=3227.0,
totl=0.48291667,
tw(1)=209.5,263.8,318.1,372.4,426.6,480.9,535.2,589.5,2*630.1,
    2*623.9,
    2*617.8,
```

```
            569.4,524.5,2*483.1,
            524.5,2*571.5,
            2*578.2,
            2*574.5,
            3*551.3,
            2*522.2,
            2*452.3,
            2*463.0,
            2*499.4,
            2*476.1,
            2*469.8,
            3*471.9,
            2*519.1,
            2*486.8,
            3*493.1,
            2*457.3,
            2*455.1,
            2*437.8,
            2*433.0,
            2*440.3,
            2*455.1,
            3*410.0,
            2*409.3,
            435.7,3*477.3,
            3*455.2,
            3*489.1,
            3*418.9,
            3*431.2,
            2*409.1,
            2*377.4,
            2*363.1,
            2*370.7,
            2*362.6,
            2*344.3,
            2*337.6,
            2*335.6,
            3*336.5,
            318.1,263.8,209.5,2*110.2,
    vs=8.5,
$end
$frpmox
    enrpu39=93.845367,
    enrpu40= 6.009014,
    enrpu41= 0.122010,
    enrpu42= 0.023609,
$end
```


A. 28 Gravelines-4 PWR Rods

Halden Project has reported base-irradiation LHGR histories and post-irradiation (rod puncture) FGR for three full-length PWR MOX rods from Gravelines-4 reactor, France, which were subsequently sectioned to produce test rods for various instrumented tests (Beguin 1999; Fujii and Claudel 2001; Claudel and Huet 2001; Petiprez 2002). These commercial rods did not experience LHGRs in excess of $25 \mathrm{~kW} / \mathrm{m}$ or temperatures in excess of 1500 K , resulting in measured FGR below 5 percent.

These three full-length commercial rods were used to assess the FRAPCON-3.4 MOX FGR predictions. The input files used for the MOX FGR assessments are shown below.

Gravelines-4 Rod N06

* Goesins:

FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED', CARRIAGE CONTROL='NONE'
\star

* GOESOUTS:

FILE06='GraveRodN06.out', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='GraveRodn06.plot', STATUS='UNKNOWN', FORM='FORMATTED', CARRIAGE CONTROL='LIST'

Full-Length Gravelines-4 4-Cycle PWR MOX rod N06
\$frpen
im=58, na=12,
mechan $=2$, ngasr $=45$,
\$end
\$frpcon
$\mathrm{cpl}=7.2, \mathrm{crdt}=0.0$, thkcld $=0.0224$, thkgap $=0.0033$,
dco $=0.374$, pitch $=0.5$, nplot=1,
rc $=0.0$, fotmtl = 1.997,
den $=94.43$, rsntr $=52$. ,
dspg = 0.3, fa $=1 ., \quad$ dspgw $=0.03$,
enrch $=0.229$, fgpav $=382.0$, hdish $=0.0115$,
dishsd $=0.0649$
hplt $=0.4634, \mathrm{icm}=4, \operatorname{imox}=1, \mathrm{comp}=5.945$,
idxgas $=1$, iplant $=-2$, iq $=0, j d l p r=0, f a=1.0$,
totl $=12.0$, roughc $=2.5 \mathrm{e}-5$, roughf $=8.54 \mathrm{e}-5, \mathrm{vs}=10.0$,
nunits = 1,
$\mathrm{p} 2(1)=2250 ., \operatorname{tw}(1)=548, \mathrm{go}(1)=2.8 \mathrm{e} 6$
jn $=13,13,13,13,13$,
jst $=16 * 1,10 * 2,10 * 3,10 * 4,12 * 5$
$\mathrm{qf}(1)=$
0.4823, 0.8646, 1.116, 1.198, 1.206,
$1.189,1.1678,1.1374,1.1089,1.0318$,
$0.8738,0.4437,0.2306$
$x(1)=$
$0.000,1.053,2.105,3.158,4.211$,
5.263, 6.316, 7.579, 8.421, 9.474,
10.526, 11.578, 12.000
qf(14) =
$0.5614,0.8883,1.0116,1.0231,1.03371$,
1.0594, 1.0718, 1.117, 1.1534, 1.1933,
1.1418, 0.6498, 0.3528
$x(14)=$

```
0.000, 1.053, 2.105, 3.158, 4.211,
5.263, 6.316, 7.579, 8.421, 9.474,
10.526, 11.578, 12.000
qf(27) =
0.5661, 0.9515, 1.0570, 1.0553, 1.0536,
1.0536, 1.0712, 1.0737, 1.0896, 1.108,
1.0568, 0.6466, 0.5017,
x(27) =
0.000, 1.053, 2.105, 3.158, 4.211,
5.263, 6.316, 7.579, 8.421, 9.474,
10.526, 11.578, 12.000
qf(40) =
0.4364, 0.9766, 1.1449, 1.1631, 1.1510,
1.1348, 1.0986, 1.0925, 1.067, 1.0482,
0.9111, 0.4979, 0.3850
x(40) =
0.000, 1.053, 2.105, 3.158, 4.211,
5.263, 6.316, 7.579, 8.421, 9.474,
10.526, 11.578, 12.000
qf(53) =
0.3459, 0.9048, 1.1217, 1.1804, 1.1902,
1.1765, 1.1745, 1.1511, 1.1393, 1.0826,
0.8521,0.3576,0.2697
x(53) =
0.000, 1.053, 2.105, 3.158, 4.211,
5.263, 6.316, 7.579, 8.421, 9.474,
10.526, 11.578, 12.000
ProblemTime=
1.0 2.0, 3.0, 4.0, 5.0,
14.3, 24.6, 47.8, 74.7, 96.8,
124.1, 147.8, 185.5, 219.1, 239.2,
267.6, 289.1, 309.0, 313.2, 325.5,
353.0, 386.3, 413.9, 444.7, 472.5,
511.9, 544.4, 562.7, 589.4, 609.3,
621.1, 623.1, 637.1, 665.2, 697.1,
717.9, 751.8, 783.0, 804.7, 835.3,
865.8, 879.6, 903.7, 924.4, 932.1,
944.5, 976.2, 1006.8, 1034.1, 1044.5,
1074.2, 1091.6, 1114.4, 1176.9, 1201.7,
1218.7, 1225.4, 1226.6
    qmpy =
1.2, 2.4, 3.6, 4.8, 6.0,
7.14, 6.83, 6.89, 6.83, 6.86,
6.83, 6.83, 6.83, 6.83, 6.83, 6.74,
6.22, 5.33, 5.33, 7.07, 7.13,
7.16, 7.19, 7.19, 7.22, 7.25,
7.28, 7.25, 7.25, 6.68, 6.31,
6.31, 5.97, 5.97, 6.00, 5.97,
5.94, 5.85, 5.94, 5.94, 5.94,
5.97, 5.97, 5.70, 5.70, 3.78,
4*3.93, 4.02,
3.99, 4.05, 4.15, 4.11, 3.87,
3.75, 3.75
slim = .05,
$end
$frpmox
enrpu39 = 65.83, enrpu40 = 23.45, enrpu41 = 7.39,
```

```
enrpu42 = 3.33,
$end
```


Gravelines-4 Rod N12

```
* GOESINS:
FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
                                    CARRIAGE CONTROL='NONE'
*
* GOESOUTS:
FILE06='GraveRodN12.out', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='GraveRodN12.plot', STATUS='UNKNOWN', FORM='FORMATTED',
                CARRIAGE CONTROL='LIST'
/****************************************************************************
    Full-Length Gravelines-4 4-Cycle PWR MOX rod N12
$frpcn
im=58, na=12,
mechan = 2, ngasr = 45,
$end
$frpcon
cpl = 7.2, crdt = 0.0, thkcld = 0.0224, thkgap = 0.0033,
dco = 0.374, pitch = 0.5,nplot=1,
rc = 0.0, fotmtl = 1.996,
den = 94.72, rsntr = 8.9,
dspg = 0.3, fa = 1., dspgw = 0.03,
enrch = 0.231, fgpav = 382.0, hdish = 0.0115,
dishsd = 0.0655
hplt = 0.4634, icm = 4, imox = 1, comp = 5.931,
idxgas = 1, iplant =-2, iq = 0, jdlpr = 0, fa = 1.0,
totl = 12.0, roughc = 2.5e-5, roughf = 8.54e-5, vs = 10.0,
nunits = 1,
p2(1) = 2250., tw(1) = 548, go(1) = 2.8e6
jn = 13, 13, 13, 13, 13,
jst = 16*1, 10*2, 10*3, 10*4, 12*5
qf(1) =
0.4823, 0.8646, 1.116, 1.198, 1.206,
1.189, 1.1678, 1.1374, 1.1089, 1.0318,
0.8738, 0.4437, 0.2306
x(1) =
0.000, 1.053, 2.105, 3.158, 4.211,
5.263, 6.316, 7.579, 8.421, 9.474,
10.526, 11.578, 12.000
qf(14) =
0.5614, 0.8883, 1.0116, 1.0231, 1.03371,
1.0594, 1.0718, 1.117, 1.1534, 1.1933,
1.1418, 0.6498, 0.3528
x(14) =
0.000, 1.053, 2.105, 3.158, 4.211,
5.263, 6.316, 7.579, 8.421, 9.474,
10.526, 11.578, 12.000
qf(27) =
0.5661, 0.9515, 1.0570, 1.0553, 1.0536,
1.0536, 1.0712, 1.0737, 1.0896, 1.108,
1.0568, 0.6466, 0.5017,
x(27) =
0.000, 1.053, 2.105, 3.158, 4.211,
5.263, 6.316, 7.579, 8.421, 9.474,
10.526, 11.578, 12.000
```

```
qf(40) =
0.4364, 0.9766, 1.1449, 1.1631, 1.1510,
1.1348, 1.0986, 1.0925, 1.067, 1.0482,
0.9111, 0.4979, 0.3850
x(40) =
0.000, 1.053, 2.105, 3.158, 4.211,
5.263, 6.316, 7.579, 8.421, 9.474,
10.526, 11.578, 12.000
qf(53) =
0.3459, 0.9048, 1.1217, 1.1804, 1.1902,
1.1765, 1.1745, 1.1511, 1.1393, 1.0826,
0.8521,0.3576, 0.2697
x(53) =
0.000, 1.053, 2.105, 3.158, 4.211,
5.263, 6.316, 7.579, 8.421, 9.474,
10.526, 11.578, 12.000
ProblemTime=
1.0 2.0, 3.0, 4.0, 5.0,
14.3, 24.6, 47.8, 74.7, 96.8,
124.1, 147.8, 185.5, 219.1, 239.2,
267.6, 289.1, 309.0, 313.2, 325.5,
353.0, 386.3, 413.9, 444.7, 472.5,
511.9, 544.4, 562.7, 589.4, 609.3,
621.1, 623.1, 637.1, 665.2, 697.1,
717.9, 751.8, 783.0, 804.7, 835.3,
865.8, 879.6, 903.7, 924.4, 932.1,
944.5, 976.2, 1006.8, 1034.1, 1044.5,
1074.2, 1091.6, 1114.4, 1176.9, 1201.7,
1218.7, 1225.4, 1226.6
qmpy =
1.2, 2.4, 3.6, 4.8, 6.0,
7.38, 7.07, 7.10, 7.04, 7.07,
7.04, 7.04, 7.01, 7.01, 7.01, 6.92,
6.37, 5.47, 5.47, 7.13, 7.22,
7.22, 7.25, 7.25, 7.28, 7.28,
7.28, 7.25, 7.28, 6.71, 6.34,
6.34, 6.22, 6.19, 6.19, 6.19,
6.10, 6.00, 6.10, 6.10, 6.07,
6.13, 6.10, 5.79, 5.79, 3.75,
3.90, 3.90, 3.93, 3.90, 3.99,
3.96, 4.02, 4.11, 4.08, 3.84,
4.05, 3.81
slim = .05,
$end
$frpmox
enrpu39 = 65.84, enrpu40 = 23.40, enrpu41 = 7.43,
enrpu42 = 3.33
$end
```


Gravelines-4 Rod P16

* GOESINS:

FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED', CARRIAGE CONTROL='NONE'
*

* GOESOUTS:

FILE06='GraveRodP16.out', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='GraveRodP16.plot', STATUS='UNKNOWN', FORM='FORMATTED',

```
/****************************************************************************
        Full-Length Gravelines-4 4-Cycle PWR MOX rod P16
    $frpcn
    im=58, na=12,
    mechan = 2, ngasr = 45,
    $end
    $frpcon
    cpl = 7.2, crdt = 0.0, thkcld = 0.0224, thkgap = 0.0033,
    dco = 0.374, pitch = 0.5,nplot=1,
    rc = 0.0, fotmtl = 2.000,
    den = 94.62, rsntr = 40.,
    dspg = 0.3, fa = 1., dspgw = 0.03,
    enrch = 0.225, fgpav = 382.0, hdish = 0.0115,
    dishsd = 0.0634
    hplt = 0.4634, icm = 4, imox = 1, comp = 4.688,
    idxgas = 1, iplant =-2, iq = 0, jdlpr = 0, fa = 1.0,
    totl = 12.0, roughc = 2.5e-5, roughf = 8.54e-5, vs = 10.0,
    nunits = 1,
    p2(1) = 2250., tw(1) = 548, go(1) = 2.8e6
    jn = 13, 13, 13, 13, 13,
    jst = 16*1, 10*2, 10*3, 10*4, 12*5
    qf(1) =
    0.4823, 0.8646, 1.116, 1.198, 1.206,
    1.189, 1.1678, 1.1374, 1.1089, 1.0318,
    0.8738,0.4437, 0.2306
    x(1) =
    0.000, 1.053, 2.105, 3.158, 4.211,
    5.263, 6.316, 7.579, 8.421, 9.474,
    10.526, 11.578, 12.000
    qf(14) =
    0.5614, 0.8883, 1.0116, 1.0231, 1.03371,
    1.0594, 1.0718, 1.117, 1.1534, 1.1933,
    1.1418, 0.6498, 0.3528
    x(14) =
    0.000, 1.053, 2.105, 3.158, 4.211,
    5.263, 6.316, 7.579, 8.421, 9.474,
    10.526, 11.578, 12.000
    qf(27) =
    0.5661, 0.9515, 1.0570, 1.0553, 1.0536,
    1.0536, 1.0712, 1.0737, 1.0896, 1.108,
    1.0568, 0.6466, 0.5017,
    x(27) =
    0.000, 1.053, 2.105, 3.158, 4.211,
    5.263, 6.316, 7.579, 8.421, 9.474,
    10.526, 11.578, 12.000
    qf(40) =
    0.4364, 0.9766, 1.1449, 1.1631, 1.1510,
    1.1348, 1.0986, 1.0925, 1.067, 1.0482,
    0.9111, 0.4979, 0.3850
    x(40) =
    0.000, 1.053, 2.105, 3.158, 4.211,
    5.263, 6.316, 7.579, 8.421, 9.474,
    10.526, 11.578, 12.000
    qf(53) =
    0.3459, 0.9048, 1.1217, 1.1804, 1.1902,
    1.1765, 1.1745, 1.1511, 1.1393, 1.0826,
```

```
0.8521, 0.3576, 0.2697
x(53) =
0.000, 1.053, 2.105, 3.158, 4.211,
5.263, 6.316, 7.579, 8.421, 9.474,
10.526, 11.578, 12.000
ProblemTime=
1.0 2.0, 3.0, 4.0, 5.0,
14.3, 24.6, 47.8, 74.7, 96.8,
124.1, 147.8, 185.5, 219.1, 239.2,
267.6, 289.1, 309.0, 313.2, 325.5,
353.0, 386.3, 413.9, 444.7, 472.5,
511.9, 544.4, 562.7, 589.4, 609.3,
621.1, 623.1, 637.1, 665.2, 697.1,
717.9, 751.8, 783.0, 804.7, 835.3,
865.8, 879.6, 903.7, 924.4, 932.1,
944.5, 976.2, 1006.8, 1034.1, 1044.5,
1074.2, 1091.6, 1114.4, 1176.9, 1201.7,
1218.7, 1225.4, 1226.6
qmpy =
1.2, 2.4, 3.6, 4.8, 6.0,
6.64, 6.36, 6.39, 6.34, 6.36,
6.34, 6.34, 6.31, 6.31, 6.31, 6.23,
5.73, 4.92, 4.92, 6.56, 6.65,
6.65, 6.67, 6.67, 6.70, 6.70,
6.70, 6.67, 6.70, 6.17, 5.39,
5.39, 5.29, 5.26, 5.26, 5.26,
5.18, 5.10, 6.18, 5.18, 5.16,
5.21, 5.18, 4.92, 4.92, 3.64,
3.78, 3.78, 3.81, 3.78, 3.87,
3.84, 3.90, 3.99, 3.96, 3.73,
3.93, 3.70
slim = .05,
$end
$frpmox
enrpu39 = 65.99, enrpu40 = 23.45, enrpu41 = 7.08,
enrpu42 = 3.48,
$end
```


A. 29 Beznau-1 M504 Rods

The M504 program (Cook et al. 2003, 2004) consisted of four MOX rods irradiated in assembly M504 for four cycles in the Beznau-1 PWR reactor. The MOX fuel was fabricated using the SBR process, which results in a relatively homogenous distribution of the PuO_{2}. These rods were irradiated up to a burnup between 37 and $43 \mathrm{GWd} / \mathrm{MTM}$. The measured gas release values are relatively low and have been obtained from puncture measurements that have less uncertainty than those estimated from pressure measurements.

These four rods were used to assess the FRAPCON-3.4 MOX FGR predictions. The input files used for the MOX FGR assessments are provided below.

```
M504 Rod H8
* GOESINS:
FILEO5='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
                CARRIAGE CONTROL='NONE'
*
* GOESOUTS:
FILE06='M504-H8.out',
        STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='M504-H8.plot',
                STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'
/**************************************************************************Test
M504 Rod H8
    $frpcn
    im=13, nr=17, ngasr=45, na=9
    $end
    $frpcon
    dco=0.4398, thkcld=0.02598, thkgap=0.00335, totl=11.41732, cpl=10
    dspg=0.374, dspgw=0.05, vs=34
    hplt=0.6, rc=0, hdish=0.0113, dishsd=0.0969
    enrch=0.235, imox=1, comp=5.54
    fotmtl=1.996, gadoln=0, ppmh2o=0, ppmn2=0
    den=95, deng=0, roughf=0.0000787, rsntr=99, tsint=2911
    icm=4, cldwks=0.5, roughc=0.0000197, catexf=0.05, chorg=10
    fgpav=349.54, idxgas=1
iplant=-2, pitch=0.5799, icor=0, crdt=0, crdtr=0, flux=10*221000000000000000
    crephr=10, sgapf=31, slim=0.05, qend=0.3
    jdlpr=1, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
    ProblemTime=
    334.82, 353.49, 677.07, 706.5, 726.96
    1031.11, 1071.72, 1140.9, 1144.47, 1164.61
    1653.98, 1693.76, 1716.98
    qmpy=
    5.218, 5.041, 6.127, 5.77, 2.701
    5.691, 5.541, 5.264, 5.154, 1.829
    2.295, 2.057, 0.881
    nsp=0
    p2=2248.08, tw= 550, go= 2650000
    iq=0, fa=1
    x(1)=
    0, 1.14167, 2.28333, 3.425, 4.56667
    5.70833, 6.85, 7.99167, 9.13333, 10.275
11.41732
```

```
qf(1)=
0.5, 1, 1, 1, 1
1, 1, 1, 1, 1
    0.5
jn=11
jst=
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1
$end
$frpmox
enrpu39=65.99, enrpu40=23.45, enrpu41=7.08, enrpu42=3.48
$end
```


M504 Rod I2

* GOESINS:

FILEO5='nullfile', STATUS='UNKNOWN', FORM='FORMATTED', CARRIAGE CONTROL='NONE'
\star

* GOESOUTS:

FILE06='M504-I2. out', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='M504-I2.plot', STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'

M504 Rod I2
\$frpen
im=13, nr=17, ngasr=45, na=9
\$end
\$frpcon
$\mathrm{dco}=0.4398$, thkcld=0.02598, thkgap=0.00335, totl=11.41732, cpl=10
$\mathrm{dspg}=0.374$, dspgw=0.05, vs=34
hplt=0.6, rc=0, hdish=0.0113, dishsd=0.0969
enrch=0.235, imox=1, comp=5.54
fotmtl=1.996, gadoln=0, ppmh2o=0, ppmn2=0
den $=95$, deng $=0$, roughf=0.0000787, rsntr=99, tsint=2911
icm=4, cldwks=0.5, roughc=0.0000197, catexf=0.05, chorg=10
fgpav=349.54, idxgas=1
iplant $=-2$, pitch=0.5799, icor=0, crdt=0, crdtr=0, flux=10*22100000000000000
crephr=10, sgapf=31, slim=0.05, qend=0.3
jdlpr=1, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
ProblemTime=
334.29, 351.03, 677.47, 705.8, 717.85
1021.77, 1065.36, 1133.34, 1138.29, 1164.62
1660.3, 1699.27, 1724.7
qmpy=
$4.67,4.523,6.806,6.425,3.057$
$6.456,6.242,5.928,5.791,2.408$
3.834, 3.307, 0.805
$\mathrm{nsp}=0$
$\mathrm{p} 2=2248.08, \mathrm{tw}=550, \mathrm{go}=2650000$
iq=0, fa=1
$\mathrm{x}(1)=$
$0,1.14167,2.28333,3.425,4.56667$
$5.70833,6.85,7.99167,9.13333,10.275$
11.41732
$q f(1)=$

```
0.5, 1, 1, 1, 1
1, 1, 1, 1, 1
            0.5
jn=11
jst=
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1
$end
$frpmox
enrpu39=65.99, enrpu40=23.45, enrpu41=7.08, enrpu42=3.48
$end
```


M504 Rod K9

* GOESINS:
FILEO5='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
CARRIAGE CONTROL='NONE'
*
* GOESOUTS:
FILE06='M504-K9.Out',
STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='M504-K9.plot',
STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'

Test M504 Rod K9
\$frpen
im=13, nr=17, ngasr=45, na=9
\$end
\$frpcon
dco=0.4398, thkcld=0.02598, thkgap=0.00335, totl=11.41732, cpl=10
$\mathrm{dspg}=0.374, \mathrm{dspgw}=0.05, \mathrm{vs}=34$
hplt=0.6, rc=0, hdish=0.0113, dishsd=0.0969
enrch=0.235, imox=1, comp=5.54
fotmtl=1.996, gadoln=0, ppmh2o=0, ppmn2=0
den=95, deng=0, roughf=0.0000787, rsntr=99, tsint=2911
icm=4, cldwks=0.5, roughc=0.0000197, catexf=0.05, chorg=10
fgpav=349.54, idxgas=1
iplant $=-2$, pitch=0.5799, icor=0, crdt=0, crdtr=0, flux=10*22100000000000000
crephr=10, sgapf=31, slim=0.05, qend=0.3
jdlpr=1, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
ProblemTime=
331.42, 353.84, 679.98, 710.47, 719.92
1026.15, 1065.77, 1131.74, 1138.24, 1169.64
1656.16, 1703.43, 1720.25
qmpy=
$5.618,5.383,6.913,6.441,3.033$
$6.373,6.145,5.831,5.666,2.085$
2.847, 1.948, 1.094
$\mathrm{nsp}=0$
$\mathrm{p} 2=2248.08, \mathrm{tw}=550, \mathrm{go}=2650000$
iq=0, fa=1
$x(1)=$
$0,1.14167,2.28333,3.425,4.56667$
$5.70833,6.85,7.99167,9.13333,10.275$
11.41732
$q f(1)=$
$0.5,1,1,1,1$

```
1, 1, 1, 1, 1
        0.5
    jn=11
jst=
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1
$end
$frpmox
enrpu39=65.99, enrpu40=23.45, enrpu41=7.08, enrpu42=3.48
$end
```


M504 Rod M9

```
* GOESINS:
FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
    CARRIAGE CONTROL='NONE'
*
* GOESOUTS:
FILE06='M504-M9.out',
    STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='M504-M9.plot',
    STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'
/***********************************************************************Terert
M504 Rod M9
    $frpcn
    im=13, nr=17, ngasr=45, na=9
    $end
    $frpcon
    dco=0.4398, thkcld=0.02598, thkgap=0.00335, totl=11.41732, cpl=10
    dspg=0.374, dspgw=0.05, vs=34
    hplt=0.6, rc=0, hdish=0.0113, dishsd=0.0969
    enrch=0.235, imox=1, comp=5.54
    fotmtl=1.996, gadoln=0, ppmh2o=0, ppmn2=0
    den=95, deng=0, roughf=0.0000787, rsntr=99, tsint=2911
    icm=4, cldwks=0.5, roughc=0.0000197, catexf=0.05, chorg=10
    fgpav=349.54, idxgas=1
iplant=-2, pitch=0.5799, icor=0, crdt=0, crdtr=0, flux=10*221000000000000000
    crephr=10, sgapf=31, slim=0.05, qend=0.3
    jdlpr=1, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
    ProblemTime=
    335.61, 355.01, 677.9, 705.85, 721.76
    1030.13, 1067.69, 1133.11, 1140.94, 1165.64
    1650.06, 1694.53, 1709.3
    qmpy=
    5.346, 5.166, 7.078, 6.733, 3.472
    6.761, 6.483, 6.13, 6.005, 2.32
    3.341, 2.944, 1.247
    nsp=0
    p2=2248.08, tw= 550, go= 2650000
    iq=0, fa=1
    x(1)=
    0, 1.14167, 2.28333, 3.425, 4.56667
    5.70833, 6.85, 7.99167, 9.13333, 10.275
11.41732
    qf(1)=
```

```
0.5, 1, 1, 1, 1
1, 1, 1, 1, 1
        0.5
jn=11
jst=
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1
$end
$frpmox
enrpu39=65.99, enrpu40=23.45, enrpu41=7.08, enrpu42=3.48
$end
```


A. 30 Beznau-1 M308 Rod

In the M308 program (Boulanger et al. 2004), segmented MOX rods were irradiated in the Beznau reactor up to peak burnups of 55 to $60 \mathrm{GWd} / \mathrm{MTM}$. The MOX fuel was fabricated using the MIMAS-AUC process by BN , which results in larger PuO_{2} particle sizes than the SBR process. Sufficient detail on the power history and measured FGR was provided for Segment 2, such that this segment was modeled using FRAPCON-3.4. Only the cladding inner and outer diameters were provided for this segment; however, since these values were identical to the cladding inner and outer diameters for a Westinghouse 15×15 fuel rod, it was assumed the rest of the rod dimensions were the same as for a Westinghouse 15×15 fuel rod.

This rod was used to assess the FRAPCON-3.4 MOX FGR predictions. The input file used for the MOX FGR assessment is shown below.

M308 Segment 2

```
* GOESINS:
FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
                            CARRIAGE CONTROL='NONE'
*
* GOESOUTS:
FILE06='M308-2.out',
            STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='M308-2.plot',
            STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'
/***********************************************************************
Assembly M308, segment 2 of a PWR segmented Rod
    $frpcn
    im=29, nr=17, ngasr=45, na=9
    $end
    $frpcon
    dco=0.422, thkcld=0.02441, thkgap=0.00374, totl=1.39108, cpl=3.937
    dspg=0.3583, dspgw=0.05, vs=33
    hplt=0.6, rc=0, hdish=0.0113, dishsd=0.0939
    enrch=0.235, imox=1, comp=5.94
    fotmtl=1.996, gadoln=0, ppmh2o=0, ppmn2=0
    den=95, deng=0, roughf=0.0000787, rsntr=99, tsint=2911
    icm=4, cldwks=0.5, roughc=0.0000197, catexf=0.05, chorg=10
    fgpav=333.59, idxgas=1
    iplant=-2, pitch=0.563, icor=0, crdt=0, crdtr=0, flux=10*22100000000000000
    crephr=10, sgapf=31, slim=0.05, qend=0.3
    jdlpr=1, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
    ProblemTime=
    109.7, 188, 212.3, 301.1, 351.6
    426.4, 563.9, 644, 711.9, 776.3
    856.3, 983.4, 1079, 1086, 1152
    1166, 1399, 1420, 1469, 1728
    1786, 1794, 1831, 1890, 1956
    2005, 2061, 2127, 2158
    qmpy=
    5.989, 6.017, 5.852, 5.822, 0
    4.785, 5.06, 5.06, 5.121, 0
    5.822, 5.547, 0, 3.505, 7.376
    3.749, 7.224, 5.639, 0, 6.34
    6.005, 5.913, 0, 4.968, 5.182
```

```
5.486, 5.395, 5.334, 5.09
nsp=0
p2= 2248.08, tw= 550, go= 2610000
iq=0, fa=1
x(1)=
0, 0.13911, 0.27822, 0.41732, 0.55643
0.69554, 0.83465,0.97375, 1.11286, 1.25197
1.39108
qf(1)=
1, 1, 1, 1, 1
1, 1, 1, 1, 1
jn=11
jst=
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1
$end
$frpmox
enrpu39=65.99, enrpu40=23.45, enrpu41=7.08, enrpu42=3.48
$end
```


A. 31 Halden IFA-597.4/.5/.6/.7 Rods

IFA-597.4, 5, 6 , and 7 (Koike 2004) contained two MOX rods, containing fuel that was fabricated with the MIMAS-ADU process. Rod 10 contained mostly solid pellets, with a few hollow pellets at the top of the stack to accommodate the fuel centerline thermocouple. Rod 11 contained all hollow pellets. These rods were irradiated for four cycles in the Halden reactor to a burnup between 35 and $37 \mathrm{GWd} / \mathrm{MTM}$. The power history at the thermocouple position was provided for both rod 10 and rod 11. To determine the rod-average LHGR, for rod 10 , the power history was increased by the ratio of average power to power at the top of the rod, and the ratio of the volume of a solid pellet to the volume of a hollow pellet. For rod 11, the power history was increased by only the ratio of average power to power at the top of the rod. For these pellets, the out-of-pile re-sintering tests of 24 hours at $1700^{\circ} \mathrm{C}$ showed a density increase of 0.46 percent. However, based on in-pile free volume and pressure measurements, it was determined that the maximum densification was 0.8 percent for rod 10 and 1.4 percent for rod 11 . These measured values were used in the FRAPCON input files.

The measured gas release values used for the FRAPCON-3.4 assessment have been estimated from pressure measurements and are subject to greater uncertainty than measurements made by rod puncture.

These two rods were used to assess the FRAPCON-3.4 temperature predictions for MOX as a function of burnup and the MOX FGR predictions. The input files used for the MOX temperature and FGR assessments are shown below. Input files that include the central hole were used for the temperature assessment on rod 10 since the temperature was measured on hollow pellets. Input files that do not include the central hole were used for the FGR assessment on rod 10 since most of the pellets consist are solid. The rod 11 input file is the same for the temperature and FGR assessment since all the pellets in rod 11 are hollow.

IFA-597.4/.5/.6/7 Rod 10 FGR Case

```
* GOESINS:
FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
                CARRIAGE CONTROL='NONE'
*
* GOESOUTS:
FILE06='IFA-597-4-5-6-7R10.out',
            STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='IFA-597-4-5-6-7R10.plot',
                STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'
/***************************************************************************
IFA-597.4/.5/.6/.7 Rod 10
    $frpcn
    im=36, nr=17, ngasr=45, na=9
    $end
    $frpcon
    dco=0.374, thkcld=0.025, thkgap=0.00374, totl=0.73491, cpl=1.878
    dspg=0.315, dspgw=0.0394, vs=10
    hplt=0.4213, rc=0, hdish=0.0102, dishsd=0.0795
    enrch=0.252, imox=1, comp=7.42
    fotmtl=1.999, gadoln=0, ppmh2o=0, ppmn2=0
    den=95.86, deng=0, roughf=0.0000787, rsntr=88, tsint=2911
    icm=4, cldwks=0.5, roughc=0.0000394, catexf=0.05, chorg=0.3
    fgpav=72.52, idxgas=1
    iplant=-4, pitch=0.4724, icor=0, crdt=0, crdtr=0, flux=10*5000000000000000
```

```
crephr=10, sgapf=31, slim=0.05, qend=0.3
jdlpr=1, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
ProblemTime=
13.27, 18.51, 27, 30.44, 41.1
48.27, 89.48, 97.14, 108.18, 163.14
174.36, 182.65, 220.76, 239.01, 257.34
261.43, 283.02, 287.63, 305.73, 352.38
356.87, 420.32, 429.47, 512.27, 517.97
520.23, 559.52, 594.2, 608.3, 633.09
644.8, 662.27, 667.64, 687.04, 697.41
    736.77
qmpy=
11.041, 10.303, 10.72, 11.169, 10.271
10.913, 10.11, 10.206, 9.404, 9.34
9.632, 8.923, 9.179, 2.728, 6.515
5.906, 6.259, 5.553, 5.264, 4.846
4.75, 5.2, 4.044, 3.916, 8.73
8.184, 8.505, 8.57, 8.57, 4.59
5.585,5.456, 5.553, 5.938, 6.034
    5.745
nsp=0
p2=493.13, tw= 455, go= 0
iq=0, fa=1
x(1)=
0, 0.04429, 0.12631, 0.20833, 0.29035
0.37238, 0.4544, 0.53642, 0.61844, 0.70046
0.73491
qf(1)=
157.8, 158.5, 159.4, 160.1, 160.7
161.2, 161.6, 161.7, 161.6, 161.4
    161.2
jn=11
jst=
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
    1
$end
$frpmox
enrpu39=65.95, enrpu40=23.9, enrpu41=6.63, enrpu42=3.52
$end
```


IFA-597.4/.5/.6/.7 Rod 11 FGR Case

* GOESINS:

FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED', CARRIAGE CONTROL='NONE'
\star

* GOESOUTS:

FILE06='IFA-597-4-5-6-7R11.out', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='IFA-597-4-5-6-7R11.plot', STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'

```
/***********************************************************************IFA-
597.4/.5/.6/.7 Rod 11
    $frpon
    im=30, nr=17, ngasr=45, na=9
    $end
    $frpcon
    dco=0.374, thkcld=0.025, thkgap=0.00374, totl=0.72178, cpl=1.7165
    dspg=0.315, dspgw=0.0394, vs=10
    hplt=0.4134, rc=0.0354, hdish=0.0102, dishsd=0.0795
    enrch=0.252, imox=1, comp=7.42
    fotmtl=1.999, gadoln=0, ppmh2o=0, ppmn2=0
    den=95.86, deng=0, roughf=0.0000787, rsntr=153, tsint=2911
    icm=4, cldwks=0.5, roughc=0.0000394, catexf=0.05, chorg=0.3
    fgpav=72.52, idxgas=1
    iplant=-4, pitch=0.4724, icor=0, crdt=0, crdtr=0, flux=10*50000000000000000
    crephr=10, sgapf=31, slim=0.05, qend=0.3
    jdlpr=1, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
    ProblemTime=
    14.08, 19.64, 29.66, 32.16, 42.4
    49.61, 94.84, 100.71, 113.82, 171.92
    177.52, 182.35, 192.66, 231.13, 253.87
    273.41, 278.26, 303.35, 325.26, 335.66
    448.44, 542.09, 640.7, 662.73, 675.31
    697.11,704.71, 731.55, 737.53, 772.26
    qmpy=
    10.577, 9.723, 10.272, 10.79, 9.784
    10.516, 9.754, 10.15, 9.083, 8.992
    9.662, 8.961, 8.535, 8.9, 2.499
    6.096, 5.304, 6.096, 4.816, 4.298
    4.572, 3.627, 7.864, 4.054, 5.06
    5.09,5.517, 5.547,4.526, 5.456
    nsp=0
    p2=493.13, tw= 455, go= 0
    iq=0, fa=1
    x(1)=
    0, 0.04429, 0.12631, 0.20833, 0.29035
    0.37238, 0.4544, 0.53642, 0.61844, 0.70046
    0.72178
    qf(1)=
    157.8, 158.5, 159.4, 160.1, 160.7
    161.2, 161.6, 161.7, 161.6, 161.4
        161.3
    jn=11
    jst=
    1, 1, 1, 1, 1
    1, 1, 1, 1, 1
    1, 1, 1, 1, 1
    1, 1, 1, 1, 1
    1, 1, 1, 1, 1
    1, 1, 1, 1, 1
    $end
    $frpmox
    enrpu39=65.95, enrpu40=23.9, enrpu41=6.63, enrpu42=3.52
    $end
```


IFA-597.4/.5/.6/.7 Rod 10 Temperature Case

* GOESINS:

```
FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
                        CARRIAGE CONTROL='NONE'
*
* GOESOUTS:
FILE06='IFA-597-4-5-6-7R10tc.out',
        STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='IFA-597-4-5-6-7R10tc.plot',
                STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'
/*****************************************************************************
IFA-597.4/.5/.6/.7 Rod 10
    $frpcn
    im=36, nr=17, ngasr=45, na=9
    $end
    $frpcon
    dco=0.374, thkcld=0.025, thkgap=0.00374, totl=0.73491, cpl=1.878
    dspg=0.315, dspgw=0.0394, vs=10
    hplt=0.4213, rc=0.0354, hdish=0.0102, dishsd=0.0795
    enrch=0.252, imox=1, comp=7.42
    fotmtl=1.999, gadoln=0, ppmh2o=0, ppmn2=0
    den=95.86, deng=0, roughf=0.0000787, rsntr=55.0, tsint=2911
    icm=4, cldwks=0.5, roughc=0.0000394, catexf=0.05, chorg=0.3
    fgpav=72.52, idxgas=1
    iplant=-4, pitch=0.4724, icor=0, crdt=0, crdtr=0, flux=10*50000000000000000
    crephr=10, sgapf=31, slim=0.05, qend=0.3
    jdlpr=1, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
    ProblemTime=
    13.27, 18.51, 27, 30.44, 41.1
    48.27, 89.48, 97.14, 108.18, 163.14
    174.36, 182.65, 220.76, 239.01, 257.34
    261.43, 283.02, 287.63, 305.73, 352.38
    356.87, 420.32, 429.47, 512.27, 517.97
    520.23, 559.52, 594.2, 608.3, 633.09
    644.8, 662.27, 667.64, 687.04, 697.41
        736.77
    qmpy=
    11.041, 10.303, 10.72, 11.169, 10.271
    10.913, 10.11, 10.206, 9.404, 9.34
    9.632, 8.923, 9.179, 2.728, 6.515
    5.906, 6.259, 5.553, 5.264, 4.846
    4.75, 5.2, 4.044, 3.916, 8.73
    8.184, 8.505, 8.57, 8.57, 4.59
    5.585, 5.456, 5.553, 5.938, 6.034
        5.745
    nsp=0
    p2=493.13, tw= 455, go= 0
    iq=0, fa=1
    x(1)=
    0, 0.04429, 0.12631, 0.20833, 0.29035
    0.37238, 0.4544, 0.53642, 0.61844, 0.70046
    0.73491
    qf(1)=
    157.8, 158.5, 159.4, 160.1, 160.7
    161.2, 161.6, 161.7, 161.6, 161.4
        161.2
    jn=11
    jst=
    1, 1, 1, 1, 1
```

```
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
    1
$end
$frpmox
enrpu39=65.95, enrpu40=23.9, enrpu41=6.63, enrpu42=3.52
$end
```


IFA-597.4/.5/.6/.7 Rod 11 Temperature Case

* GOESINS:

```
FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
```

 CARRIAGE CONTROL='NONE'
 * GOESOUTS:
FILE06='IFA-597-4-5-6-7R11.out',
STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='IFA-597-4-5-6-7R11.plot',
STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'

IFA-597.4/.5/.6/.7 Rod 11
\$frpen
im=30, nr=17, ngasr=45, na=9
\$end
\$frpcon
dco=0.374, thkcld=0.025, thkgap=0.00374, totl=0.72178, cpl=1.7165
$\mathrm{dspg}=0.315, \mathrm{dspgw}=0.0394, \mathrm{vs}=10$
hplt=0.4134, rc=0.0354, hdish=0.0102, dishsd=0.0795
enrch=0.252, imox=1, comp=7.42
fotmtl=1.999, gadoln=0, ppmh2o=0, ppmn2=0
den $=95.86$, deng=0, roughf=0.0000787, rsntr=66.0, tsint=2911
icm=4, cldwks=0.5, roughc=0.0000394, catexf=0.05, chorg=0.3
fgpav=72.52, idxgas=1
iplant $=-4$, pitch=0.4724, icor=0, crdt=0, crdtr=0, flux=10*5000000000000000
crephr=10, sgapf=31, slim=0.05, qend=0.3
jdlpr=1, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
ProblemTime=
14.08, 19.64, 29.66, 32.16, 42.4
49.61, 94.84, 100.71, 113.82, 171.92
177.52, 182.35, 192.66, 231.13, 253.87
273.41, 278.26, 303.35, 325.26, 335.66
448.44, 542.09, 640.7, 662.73, 675.31
697.11, 704.71, 731.55, 737.53, 772.26
qmpy=
10.577, 9.723, 10.272, 10.79, 9.784
10.516, 9.754, 10.15, 9.083, 8.992
$9.662,8.961,8.535,8.9,2.499$
$6.096,5.304,6.096,4.816,4.298$
$4.572,3.627,7.864,4.054,5.06$
$5.09,5.517,5.547,4.526,5.456$
$\mathrm{nsp}=0$
$\mathrm{p} 2=493.13$, $\mathrm{tw}=455, \mathrm{go}=0$
iq=0, fa=1
$x(1)=$
$0,0.04429,0.12631,0.20833,0.29035$
$0.37238,0.4544,0.53642,0.61844,0.70046$
0.72178
qf(1) =
157.8, 158.5, 159.4, 160.1, 160.7
$161.2,161.6,161.7,161.6,161.4$ 161.3
jn=11
jst=
$1,1,1,1,1$
$1,1,1,1,1$
$1,1,1,1,1$
$1,1,1,1,1$
$1,1,1,1,1$
$1,1,1,1,1$
\$end
\$frpmox
enrpu $39=65.95$, enrpu $40=23.9$, enrpu $41=6.63$, enrpu $42=3.52$ \$end

A. 32 FUGEN Rods

The MOX fuel assembly, E09 (Ozawa 2004), was irradiated for 10 cycles in the Japanese advanced thermal reactor, Fugen. This assembly reached the highest assembly average burnup of $38 \mathrm{GWd} / \mathrm{MTM}$. The rods in this assembly were arranged in a circular pattern consisting of three concentric rings. The power history was approximately the same for all rods in a given ring. However, the power histories given for each ring did not provide the rod-average burnup that was measured in the pellets via gamma scanning. This discrepancy is most likely due to uncertainty in the linear heat rates that were provided. To model these cases, the power histories that were supplied were increased by a factor so the burnup calculated using these histories would be equivalent to the measured burnup.

The pellet stack consisted of pellets with varying plutonium concentration in different axial regions. The top and bottom areas contained more plutonium than the central region. Since it is not possible to specify the plutonium concentration at various axial regions along the pellet stack in FRAPCON, two cases were run. In the first case, the plutonium concentration for the middle section was used for the entire rod, and in the second case, the plutonium concentration for the top and bottom sections was used for the entire rod. This allowed the effect of plutonium concentration on FGR to be seen. Plutonium concentration had very little impact on the predicted FGR (<5 percent relative).

The measured gas release values for these rods have been obtained by puncture measurement on several rods from each ring.

These three rods were used to assess the FRAPCON-3.4 MOX FGR predictions. The input files used for the MOX FGR assessment are shown below.

FUGEN Assembly E09 Inner Rod

```
* GOESINS:
```

FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
CARRIAGE CONTROL='NONE'
*

* GOESOUTS:
FILE06='E09-inner.out',
STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='E09-inner.plot',
STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'

Rod of Japanese ATR Assembly E09
\$frpen
im=78, nr=17, ngasr=45, na=9
\$end
\$frpcon
dco=0.5693, thkcld=0.03484, thkgap=0.00571, totl=11.9416, cpl=15.252
$\mathrm{dspg}=0.4724, \mathrm{dspg} w=0.0394, \mathrm{vs}=10$
hplt=0.5138, rc=0, hdish=0.0079, dishsd=0.1033
enrch=, imox=1, comp=4.77
fotmtl=2, gadoln=0, ppmh2o=0, ppmn $2=0$
den=94.76, deng=0, roughf=0.0000787, rsntr=100, tsint=3092
icm=2, cldwks=0, roughc=0.0000197, catexf=0.05, chorg=10
fgpav=42.68, idxgas=1
iplant $=-3$, pitch=0.6016, icor=0, crdt=0, crdtr=0, flux $=10 * 22100000000000000$
crephr=10, sgapf=31, slim=0.05, qend=0.3

```
jdlpr=1, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
ProblemTime=
6.7, 26.7, 61, 89.2, 103.2
118.7, 141, 153.7, 176.5, 178.5
185.3, 219.2, 247.2, 282.2, 309.3
335.4, 356.3, 358.3, 364.2, 398
426.1, 454.1, 480.9, 486.9, 493.6
512.6, 542.7, 578.2, 605.3, 640.3
668.3, 676.3, 682.4, 716.3, 744.3
779.4, 807.5, 835.6, 844.6, 850.6
862.2, 874.5, 901.3, 936, 963.8
991.7, 1019.6, 1022.4, 1028.3, 1059.2
1087.4, 1122.6, 1150.7, 1185.7, 1211
1216.8, 1236.8, 1272.8, 1300, 1335.1
1364.2, 1398.3, 1401, 1405.8, 1431.7
1459.6, 1494.3, 1522.3, 1546.2, 1548.9
1555.5, 1582.7, 1617.7, 1645.6, 1680.5
1704.4, 1725.3, 1728.1
qmpy=
4.611, 4.616, 4.651, 4.7, 5.734
5.745, 5.794, 5.902, 5.949, 0
6.036, 6.199, 6.255, 6.314, 6.313
6.322, 6.332, 0, 5.995, 5.961
5.969, 5.964, 5.937, 0, 7.135
7.086, 7.052, 6.911, 6.825, 6.702
6.622, 0, 6.639, 6.535, 6.481
6.412, 6.319, 6.28, 0, 6.94
6.921, 6.878, 6.844, 6.788, 6.7
6.659, 6.607, 0, 4.963, 5.006
5.028, 5.056, 5.07, 5.099, 0
6.308, 6.234, 6.15, 6.078, 6.003
5.937, 5.874, 0, 5.757, 5.734
5.7, 5.669, 5.616, 5.587, 0
5.391, 5.361, 5.351, 5.331, 5.313
5.292, 5.3, 0
nsp=0
p2= 1024.3, tw= 534.2, go= 2757000
iq=0, fa=1
x(1)=
0, 0.32808, 1.08924, 1.83071, 2.58858
3.34646, 4.08465, 4.83924, 5.56759, 6.3189
7.07677, 7.81496, 8.56955, 9.30118, 10.05906
10.81693, 11.54199, 11.9416
qf(1)=
0.546379310344828, 0.705, 1.073, 1.338, 1.375
1.386, 1.303, 1.187, 1.056, 0.942
0.95, 0.953, 0.913, 0.858, 0.815
0.657, 0.46, 0.351427149321267
x(19)=
0, 0.32808, 1.08924, 1.83071, 2.58858
3.34646, 4.08465,4.83924, 5.56759, 6.3189
7.07677, 7.81496, 8.56955, 9.30118, 10.05906
10.81693, 11.54199, 11.9416
qf(19)=
0.442310344827586, 0.563, 0.843, 1.031, 1.08
1.134, 1.178, 1.192, 1.168, 1.13
1.177, 1.205, 1.154, 1.029, 0.92
```

```
0.707, 0.479, 0.353342081447964
x(37)=
0, 0.32808, 1.08924, 1.83071, 2.58858
3.34646, 4.08465, 4.83924, 5.56759, 6.3189
7.07677, 7.81496, 8.56955, 9.30118, 10.05906
10.81693, 11.54199, 11.9416
qf(37)=
0.390103448275862, 0.497, 0.745, 0.918, 0.973
1.04, 1.093, 1.121, 1.115, 1.1
1.15, 1.183, 1.176, 1.133, 1.117
0.924, 0.623, 0.457109502262443
x(55)=
0, 0.32808, 1.08924, 1.83071, 2.58858
3.34646, 4.08465, 4.83924, 5.56759, 6.3189
7.07677, 7.81496, 8.56955, 9.30118, 10.05906
10.81693, 11.54199, 11.9416
qf(55)=
0.467965517241379, 0.574, 0.82, 0.931, 1.01
1.064, 1.106, 1.126, 1.117, 1.078
1.113, 1.142, 1.132, 1.088, 1.084
0.92, 0.668, 0.529114932126697
x(73)=
0, 0.32808, 1.08924, 1.83071, 2.58858
3.34646, 4.08465, 4.83924, 5.56759, 6.3189
7.07677, 7.81496, 8.56955, 9.30118, 10.05906
10.81693, 11.54199, 11.9416
qf(73)=
0.483, 0.583, 0.815, 0.969, 1.012
1.069, 1.11, 1.132, 1.122, 1.084
1.126, 1.146, 1.132, 1.084, 1.06
0.894, 0.666, 0.540342081447964
x(91) =
0, 0.32808, 1.08924, 1.83071, 2.58858
3.34646, 4.08465, 4.83924, 5.56759, 6.3189
7.07677, 7.81496, 8.56955, 9.30118, 10.05906
10.81693, 11.54199, 11.9416
qf(91)=
0.524206896551724, 0.613, 0.819, 0.953, 0.99
1.043, 1.082, 1.102, 1.095, 1.08
1.115, 1.126, 1.121, 1.084, 1.062
0.924,0.705, 0.584302262443439
x(109) =
0, 0.32808, 1.08924, 1.83071, 2.58858
3.34646, 4.08465, 4.83924, 5.56759, 6.3189
7.07677, 7.81496, 8.56955, 9.30118, 10.05906
10.81693, 11.54199, 11.9416
qf(109)=
0.526637931034483, 0.615,0.82, 0.944, 0.99
1.051, 1.093, 1.11, 1.109, 1.088
1.121, 1.143, 1.121, 1.086, 1.057
0.918,0.69,0.564342081447963
x(127)=
0, 0.32808, 1.08924, 1.83071, 2.58858
3.34646, 4.08465, 4.83924, 5.56759, 6.3189
7.07677, 7.81496, 8.56955, 9.30118, 10.05906
10.81693, 11.54199, 11.9416
qf(127)=
```

```
0.515465517241379, 0.609, 0.826, 0.942, 0.99
1.051, 1.097, 1.113, 1.117, 1.104
1.108, 1.123, 1.106, 1.069, 1.061
0.929, 0.759, 0.665307692307692
x(145)=
0, 0.32808, 1.08924, 1.83071, 2.58858
3.34646, 4.08465, 4.83924, 5.56759, 6.3189
7.07677, 7.81496, 8.56955, 9.30118, 10.05906
10.81693, 11.54199, 11.9416
qf(145)=
0.54248275862069, 0.633, 0.843, 0.936, 0.991
1.044, 1.081, 1.11, 1.103, 1.088
1.123, 1.141, 1.128, 1.093, 1.067
0.923,0.659, 0.513501357466063
x(163)=
0, 0.32808, 1.08924, 1.83071, 2.58858
3.34646, 4.08465, 4.83924, 5.56759, 6.3189
7.07677, 7.81496, 8.56955, 9.30118, 10.05906
10.81693, 11.54199, 11.9416
qf(163)=
0.576155172413793, 0.649, 0.818, 0.921, 0.97
1.027, 1.073, 1.092, 1.087, 1.079
1.109, 1.13, 1.126, 1.097, 1.081
0.95,0.762,0.658387330316742
x(181) =
0, 0.32808, 1.08924, 1.83071, 2.58858
3.34646, 4.08465, 4.83924, 5.56759, 6.3189
7.07677, 7.81496, 8.56955, 9.30118, 10.05906
10.81693, 11.54199, 11.9416
qf(181)=
0.570293103448276, 0.644, 0.815, 0.914, 0.979
1.039, 1.091, 1.123, 1.118, 1.099
1.127, 1.134, 1.121, 1.074, 1.052
0.921,0.745, 0.648000904977375
jn=18,18,18,18,18,18,18,18,18,18,18
jst=
1, 1, 1, 1, 2
2, 2, 2, 2, 2
3, 3, 3, 3, 3
3, 3, 3, 4, 4
4, 4, 4, 4, 5
5, 5, 5, 5, 5
5, 5, 6, 6, 6
6, 6, 6, 6, 7
7, 7, 7, 7, 7
7, 7, 7, 8, 8
8, 8, 8, 8, 8
9, 9, 9, 9, 9
9, 9, 9, 10, 10
10, 10, 10, 10, 10
11, 11, 11, 11, 11
11, 11, 11
$end
$frpmox
enrpu39=65, enrpu40=24, enrpu41=7, enrpu42=4
$end
```


FUGEN Assembly E09 Intermediate Rod

* GOESINS:

FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED', CARRIAGE CONTROL='NONE'
*

* GOESOUTS:

FILE06='E09-intermediate.out', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='E09-intermediate.plot',
STATUS = 'UNKNOWN', FORM='FORMATTED', CARRIAGE CONTROL='LIST'
$/ \star \star * \operatorname{Interm}$
ediate Rod of Japanese ATR Assembly E09
\$frpen
im=78, nr=17, ngasr=45, na=9
\$end
\$frpcon
$\mathrm{dco}=0.5693$, thkcld=0.03484, thkgap=0.00571, totl=11.9416, cpl=15.252
$\mathrm{dspg}=0.4724, \mathrm{dspgw}=0.0394, \quad v s=10$
$h p l t=0.5138, \quad r c=0$, hdish=0.0079, dishsd=0.1033
enrch=, imox=1, comp=4.77
fotmtl=2, gadoln=0, ppmh2o=0, ppmn2=0
den $=94.76$, deng=0, roughf=0.0000787, rsntr=100, tsint=3092
icm=2, cldwks=0, roughc=0.0000197, catexf=0.05, chorg=10
fgpav=42.68, idxgas=1
iplant $=-3$, pitch=0.6016, icor=0, crdt=0, crdtr=0, flux=10*22100000000000000
crephr=10, sgapf=31, slim=0.05, qend=0.3
jdlpr=1, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
ProblemTime=
$6.7,26.7,61,89.2,103.2$
118.7, 141, 153.7, 176.5, 178.5
185.3, 219.2, 247.2, 282.2, 309.3
$335.4,356.3,358.3,364.2,398$
$426.1,454.1,480.9,486.9,493.6$
$512.6,542.7,578.2,605.3,640.3$
668.3, 676.3, 682.4, 716.3, 744.3
$779.4,807.5,835.6,844.6,850.6$
862.2, 874.5, 901.3, 936, 963.8
991.7, 1019.6, 1022.4, 1028.3, 1059.2
$1087.4,1122.6,1150.7,1185.7,1211$
1216.8, 1236.8, 1272.8, 1300, 1335.1
1364.2, 1398.3, 1401, 1405.8, 1431.7
1459.6, 1494.3, 1522.3, 1546.2, 1548.9
$1555.5,1582.7,1617.7,1645.6,1680.5$
1704.4, 1725.3, 1728.1
qmpy=
$6.966,6.971,7.015,7.079,8.633$
$8.626,8.672,8.819,8.86,0$
$8.845,9.045,9.089,9.135,9.109$
$9.104,9.105,0,8.537,8.476$
$8.478,8.462,8.415,0,9.921$
$9.845,9.788,9.569,9.432,9.238$
$9.108,0,8.999,8.846,8.755$
$8.638,8.492,8.418,0,9.12$
$9.088,9.023,8.957,8.858,8.72$
$8.636,8.543,0,6.353,6.4$
$6.415,6.435,6.44,6.461,0$
$7.817,7.716,7.588,7.482,7.364$

```
7.264, 7.164, 0, 6.934, 6.894
6.838,6.782, 6.703, 6.655, 0
6.333, 6.29, 6.265, 6.232, 6.195
6.159, 6.159, 0
nsp=0
p2= 1024.3, tw= 534.2, go= 2757000
iq=0, fa=1
x(1)=
0, 0.32808, 1.08924, 1.83071, 2.58858
3.34646, 4.08465, 4.83924, 5.56759, 6.3189
7.07677, 7.81496, 8.56955, 9.30118, 10.05906
10.81693, 11.54199, 11.9416
qf(1)=
0.546379310344828, 0.705, 1.073, 1.338, 1.375
1.386, 1.303, 1.187, 1.056, 0.942
0.95, 0.953, 0.913, 0.858, 0.815
0.657, 0.46, 0.351427149321267
x(19)=
0, 0.32808, 1.08924, 1.83071, 2.58858
3.34646, 4.08465, 4.83924, 5.56759, 6.3189
7.07677, 7.81496, 8.56955, 9.30118, 10.05906
10.81693, 11.54199, 11.9416
qf(19)=
0.442310344827586, 0.563, 0.843, 1.031, 1.08
1.134, 1.178, 1.192, 1.168, 1.13
1.177, 1.205, 1.154, 1.029, 0.92
0.707, 0.479, 0.353342081447964
x(37)=
0, 0.32808, 1.08924, 1.83071, 2.58858
3.34646, 4.08465, 4.83924, 5.56759, 6.3189
7.07677, 7.81496, 8.56955, 9.30118, 10.05906
10.81693, 11.54199, 11.9416
qf(37)=
0.390103448275862, 0.497, 0.745, 0.918, 0.973
1.04, 1.093, 1.121, 1.115, 1.1
1.15, 1.183, 1.176, 1.133, 1.117
0.924, 0.623, 0.457109502262443
x(55)=
0, 0.32808, 1.08924, 1.83071, 2.58858
3.34646, 4.08465, 4.83924, 5.56759, 6.3189
7.07677, 7.81496, 8.56955, 9.30118, 10.05906
10.81693, 11.54199, 11.9416
qf(55)=
0.467965517241379, 0.574, 0.82, 0.931, 1.01
1.064, 1.106, 1.126, 1.117, 1.078
1.113, 1.142, 1.132, 1.088, 1.084
0.92, 0.668, 0.529114932126697
x(73)=
0, 0.32808, 1.08924, 1.83071, 2.58858
3.34646, 4.08465, 4.83924, 5.56759, 6.3189
7.07677, 7.81496, 8.56955, 9.30118, 10.05906
10.81693, 11.54199, 11.9416
qf(73)=
0.483, 0.583, 0.815, 0.969, 1.012
1.069, 1.11, 1.132, 1.122, 1.084
1.126, 1.146, 1.132, 1.084, 1.06
0.894, 0.666, 0.540342081447964
```

```
x(91)=
0, 0.32808, 1.08924, 1.83071, 2.58858
3.34646, 4.08465, 4.83924, 5.56759, 6.3189
7.07677, 7.81496, 8.56955, 9.30118, 10.05906
10.81693, 11.54199, 11.9416
qf(91)=
0.524206896551724, 0.613, 0.819, 0.953, 0.99
1.043, 1.082, 1.102, 1.095, 1.08
1.115, 1.126, 1.121, 1.084, 1.062
0.924,0.705, 0.584302262443439
x(109) =
0, 0.32808, 1.08924, 1.83071, 2.58858
3.34646, 4.08465, 4.83924, 5.56759, 6.3189
7.07677, 7.81496, 8.56955, 9.30118, 10.05906
10.81693, 11.54199, 11.9416
qf(109)=
0.526637931034483, 0.615, 0.82, 0.944, 0.99
1.051, 1.093, 1.11, 1.109, 1.088
1.121, 1.143, 1.121, 1.086, 1.057
0.918, 0.69, 0.564342081447963
x(127)=
0, 0.32808, 1.08924, 1.83071, 2.58858
3.34646, 4.08465, 4.83924, 5.56759, 6.3189
7.07677, 7.81496, 8.56955, 9.30118, 10.05906
10.81693, 11.54199, 11.9416
qf(127)=
0.515465517241379, 0.609, 0.826, 0.942, 0.99
1.051, 1.097, 1.113, 1.117, 1.104
1.108, 1.123, 1.106, 1.069, 1.061
0.929,0.759, 0.665307692307692
x(145)=
0, 0.32808, 1.08924, 1.83071, 2.58858
3.34646, 4.08465, 4.83924, 5.56759, 6.3189
7.07677, 7.81496, 8.56955, 9.30118, 10.05906
10.81693, 11.54199, 11.9416
qf(145)=
0.54248275862069, 0.633, 0.843, 0.936, 0.991
1.044, 1.081, 1.11, 1.103, 1.088
1.123, 1.141, 1.128, 1.093, 1.067
0.923,0.659,0.513501357466063
x(163) =
0, 0.32808, 1.08924, 1.83071, 2.58858
3.34646, 4.08465, 4.83924, 5.56759, 6.3189
7.07677, 7.81496, 8.56955, 9.30118, 10.05906
10.81693, 11.54199, 11.9416
qf(163)=
0.576155172413793, 0.649, 0.818, 0.921, 0.97
1.027, 1.073, 1.092, 1.087, 1.079
1.109, 1.13, 1.126, 1.097, 1.081
0.95,0.762,0.658387330316742
x(181) =
0, 0.32808, 1.08924, 1.83071, 2.58858
3.34646, 4.08465, 4.83924, 5.56759, 6.3189
7.07677, 7.81496, 8.56955, 9.30118, 10.05906
10.81693, 11.54199, 11.9416
qf(181)=
0.570293103448276,0.644, 0.815, 0.914, 0.979
```

```
1.039, 1.091, 1.123, 1.118, 1.099
1.127, 1.134, 1.121, 1.074, 1.052
0.921,0.745, 0.648000904977375
jn=18,18,18,18,18,18,18,18,18,18,18
jst=
1, 1, 1, 1, 2
2, 2, 2, 2, 2
3, 3, 3, 3, 3
3, 3, 3, 4, 4
4, 4, 4, 4, 5
5, 5, 5, 5, 5
5, 5, 6, 6, 6
6, 6, 6, 6, 7
7, 7, 7, 7, 7
7, 7, 7, 8, 8
8, 8, 8, 8, 8
9, 9, 9, 9, 9
9, 9, 9, 10, 10
10, 10, 10, 10, 10
11, 11, 11, 11, 11
11, 11, 11
$end
$frpmox
enrpu39=65, enrpu40=24, enrpu41=7, enrpu42=4
$end
```


FUGEN Assembly E09 Outer Rod

* GOESINS:

FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED', CARRIAGE CONTROL='NONE'
*

* GOESOUTS:

FILE06='E09-outer.out', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='E09-outer.plot', STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'

Rod of Japanese ATR Assembly E09
\$frpen
im=78, nr=17, ngasr=45, na=9
\$end
\$frpcon
dco=0.5693, thkcld=0.03484, thkgap=0.00571, totl=11.9416, cpl=15.252
$\mathrm{dspg}=0.4724, \mathrm{dspgw}=0.0394, \mathrm{vs}=10$
hplt=0.5138, rc=0, hdish=0.0079, dishsd=0.1033
enrch=0.711, imox=1, comp=2.6
fotmtl=2, gadoln=0, ppmh2o=0, ppmn2=0
den=94.76, deng=0, roughf=0.0000787, rsntr=100, tsint=3092
icm=2, cldwks=0, roughc=0.0000197, catexf=0.05, chorg=10
fgpav=42.68, idxgas=1
iplant=-3, pitch=0.6016, icor=0, crdt=0, crdtr=0, flux=10*22100000000000000
crephr=10, sgapf=31, slim=0.05, qend=0.3
jdlpr=1, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
ProblemTime=
6.7, 26.7, 61, 89.2, 103.2
118.7, 141, 153.7, 176.5, 178.5
185.3, 219.2, 247.2, 282.2, 309.3

```
335.4, 356.3, 358.3, 364.2, 398
426.1, 454.1, 480.9, 486.9, 493.6
512.6, 542.7, 578.2, 605.3, 640.3
668.3, 676.3, 682.4, 716.3, 744.3
779.4, 807.5, 835.6, 844.6, 850.6
862.2, 874.5, 901.3, 936, 963.8
991.7, 1019.6, 1022.4, 1028.3, 1059.2
1087.4, 1122.6, 1150.7, 1185.7, 1211
1216.8, 1236.8, 1272.8, 1300, 1335.1
1364.2, 1398.3, 1401, 1405.8, 1431.7
1459.6, 1494.3, 1522.3, 1546.2, 1548.9
1555.5, 1582.7, 1617.7, 1645.6, 1680.5
1704.4, 1725.3, 1728.1
qmpy=
10.787, 10.665, 10.503, 10.41, 12.45
12.283, 12.121, 12.193, 12.03, 0
11.78, 11.747, 11.567, 11.354, 11.144
10.976, 10.859, 0, 10.062, 9.866
9.759, 9.639, 9.492, 0, 10.88
10.723, 10.548, 10.209, 9.986, 9.687
9.468, 0, 9.212, 8.996, 8.848
8.666, 8.481, 8.36, 0, 8.883
8.842, 8.771, 8.675, 8.535, 8.371
8.258, 8.14, 0, 6.057, 6.099
6.11, 6.118, 6.107, 6.103, 0
7.239, 7.154, 7.04, 6.943, 6.822
6.722, 6.616, 0, 6.38, 6.349
6.301, 6.244, 6.171, 6.122, 0
5.804, 5.779, 5.769, 5.745, 5.706
5.67, 5.664, 0
nsp=0
p2= 1024.3, tw= 534.2, go= 2757000
iq=0, fa=1
x(1)=
0, 0.32808, 1.08924, 1.83071, 2.58858
3.34646, 4.08465, 4.83924, 5.56759, 6.3189
7.07677, 7.81496, 8.56955, 9.30118, 10.05906
10.81693, 11.54199, 11.9416
qf(1)=
0.546379310344828, 0.705,1.073, 1.338, 1.375
1.386, 1.303, 1.187, 1.056, 0.942
0.95, 0.953, 0.913, 0.858, 0.815
0.657, 0.46, 0.351427149321267
x(19)=
0, 0.32808, 1.08924, 1.83071, 2.58858
3.34646, 4.08465, 4.83924, 5.56759, 6.3189
7.07677, 7.81496, 8.56955, 9.30118, 10.05906
10.81693, 11.54199, 11.9416
qf(19)=
0.442310344827586, 0.563, 0.843, 1.031, 1.08
1.134, 1.178, 1.192, 1.168, 1.13
1.177, 1.205, 1.154, 1.029, 0.92
0.707,0.479, 0.353342081447964
x(37)=
0, 0.32808, 1.08924, 1.83071, 2.58858
3.34646, 4.08465, 4.83924, 5.56759, 6.3189
7.07677, 7.81496, 8.56955, 9.30118, 10.05906
```

```
10.81693, 11.54199, 11.9416
qf(37)=
0.390103448275862, 0.497, 0.745, 0.918, 0.973
1.04, 1.093, 1.121, 1.115, 1.1
1.15, 1.183, 1.176, 1.133, 1.117
0.924, 0.623, 0.457109502262443
x(55)=
0, 0.32808, 1.08924, 1.83071, 2.58858
3.34646, 4.08465, 4.83924, 5.56759, 6.3189
7.07677, 7.81496, 8.56955, 9.30118, 10.05906
10.81693, 11.54199, 11.9416
qf(55)=
0.467965517241379, 0.574, 0.82, 0.931, 1.01
1.064, 1.106, 1.126, 1.117, 1.078
1.113, 1.142, 1.132, 1.088, 1.084
0.92, 0.668, 0.529114932126697
x(73) =
0, 0.32808, 1.08924, 1.83071, 2.58858
3.34646, 4.08465, 4.83924, 5.56759, 6.3189
7.07677, 7.81496, 8.56955, 9.30118, 10.05906
10.81693, 11.54199, 11.9416
qf(73)=
0.483, 0.583, 0.815, 0.969, 1.012
1.069, 1.11, 1.132, 1.122, 1.084
1.126, 1.146, 1.132, 1.084, 1.06
0.894, 0.666, 0.540342081447964
x(91)=
0, 0.32808, 1.08924, 1.83071, 2.58858
3.34646, 4.08465, 4.83924, 5.56759, 6.3189
7.07677, 7.81496, 8.56955, 9.30118, 10.05906
10.81693, 11.54199, 11.9416
qf(91)=
0.524206896551724, 0.613, 0.819, 0.953, 0.99
1.043, 1.082, 1.102, 1.095, 1.08
1.115, 1.126, 1.121, 1.084, 1.062
0.924, 0.705, 0.584302262443439
x(109)=
0, 0.32808, 1.08924, 1.83071, 2.58858
3.34646, 4.08465, 4.83924, 5.56759, 6.3189
7.07677, 7.81496, 8.56955, 9.30118, 10.05906
10.81693, 11.54199, 11.9416
qf(109)=
0.526637931034483, 0.615, 0.82, 0.944, 0.99
1.051, 1.093, 1.11, 1.109, 1.088
1.121, 1.143, 1.121, 1.086, 1.057
0.918, 0.69, 0.564342081447963
x(127)=
0, 0.32808, 1.08924, 1.83071, 2.58858
3.34646, 4.08465, 4.83924, 5.56759, 6.3189
7.07677, 7.81496, 8.56955, 9.30118, 10.05906
10.81693, 11.54199, 11.9416
qf(127) =
0.515465517241379, 0.609, 0.826, 0.942, 0.99
1.051, 1.097, 1.113, 1.117, 1.104
1.108, 1.123, 1.106, 1.069, 1.061
0.929,0.759, 0.665307692307692
x(145)=
```

```
0, 0.32808, 1.08924, 1.83071, 2.58858
3.34646, 4.08465, 4.83924, 5.56759, 6.3189
7.07677, 7.81496, 8.56955, 9.30118, 10.05906
10.81693, 11.54199, 11.9416
qf(145)=
0.54248275862069, 0.633, 0.843, 0.936, 0.991
1.044, 1.081, 1.11, 1.103, 1.088
1.123, 1.141, 1.128, 1.093, 1.067
0.923, 0.659, 0.513501357466063
x(163)=
0, 0.32808, 1.08924, 1.83071, 2.58858
3.34646, 4.08465, 4.83924, 5.56759, 6.3189
7.07677, 7.81496, 8.56955, 9.30118, 10.05906
10.81693, 11.54199, 11.9416
qf(163)=
0.576155172413793, 0.649, 0.818, 0.921, 0.97
1.027, 1.073, 1.092, 1.087, 1.079
1.109, 1.13, 1.126, 1.097, 1.081
0.95,0.762,0.658387330316742
x(181) =
0, 0.32808, 1.08924, 1.83071, 2.58858
3.34646, 4.08465, 4.83924, 5.56759, 6.3189
7.07677, 7.81496, 8.56955, 9.30118, 10.05906
10.81693, 11.54199, 11.9416
qf(181)=
0.570293103448276, 0.644, 0.815, 0.914, 0.979
1.039, 1.091, 1.123, 1.118, 1.099
1.127, 1.134, 1.121, 1.074, 1.052
0.921, 0.745, 0.648000904977375
jn=18,18,18,18,18,18,18,18,18,18,18
jst=
1, 1, 1, 1, 2
2, 2, 2, 2, 2
3, 3, 3, 3, 3
3, 3, 3, 4, 4
4, 4, 4, 4, 5
5, 5, 5, 5, 5
5, 5, 6, 6, 6
6, 6, 6, 6, 7
7, 7, 7, 7, 7
7, 7, 7, 8, 8
8, 8, 8, 8, 8
9, 9, 9, 9, 9
9, 9, 9, 10, 10
10, 10, 10, 10, 10
11, 11, 11, 11, 11
11, 11, 11
$end
$frpmox
enrpu39=65, enrpu40=24, enrpu41=7, enrpu42=4
$end
```


A. 33 Monticello BWR Rod

A DOE program was completed in 1985 in which nine 8×8 fuel assemblies in the Monticello BWR were taken to high burnup (up to $45.6 \mathrm{MWd} / \mathrm{MTM}$ assembly average), and the rods were periodically examined nondestructively and sampled for destructive examinations (Baumgartner 1984). Four of the assemblies went for the "full term" from cycle 3 through cycle 9 from May 1974 to September 1982.

All of these rods have fully annealed Zircaloy-2 cladding. One of these rods, rod A1 from assembly MTB99 was used in the Zircaloy-2 corrosion assessment for FRAPCON-3.4. The input file used for the Zircaloy-2 corrosion assessment is shown below.

```
Monticello Rod A1 from MTB99
* GOESINS:
FILEO5='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
                CARRIAGE CONTROL='NONE'
*
* GOESOUTS:
FILEO6='geA1.out', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
/***************************************************************************
        GE Monticello rod A1 (Assembly MTB099,Rod BNA-0208)
    $frpcn
        im=72, na=12,
        mechan = 2, ngasr = 45,
    $end
    $frpcon
        cpl = 11.24, crdt = 0.0, thkcld = 0.034, thkgap = 0.0045,
        dco = 0.493, pitch = 0.64,
    den = 95., dspg = 0.4,fa = 1.,
    dspgw = 0.04, enrch = 1.45, fgpav = 14.7, hdish = 0.0,
    hplt = 0.5, icm = 5,
    icor = 1, idxgas = 1, iplant =-3, iq = 0, jdlpr = 0,
    jn = 26,26,26,26,26,26,26,
    totl = 12.0, roughc = 1.97e-5, roughf = 8.3e-5, vs = 100.0,
    nunits = 1, rsntr = 150.,
    p2(1) = 1037.0, tw(1) = 516, go(1) = 9.92e5,
    flux=1.95e16,1.95e16,2.20e16,2.40e16,2.50e16,2.60e16,2.80e16,
            2.95e16,3.08e16,
            3.17e16,3.21e16,3.15e16,2.95e16,
    jst = 6*1,3*2,8*1,5*3,1,2*4,1,4,1,2*5,5*1,5*6,3*1,10*7,1*3,18*7
    qf(1) = 0.02,0.24,0.47,0.66,0.83,0.93,0.96,0.99,0.97,0.94,0.89,0.83,0.78,
                    0.73,0.68,0.64,0.61,0.59,0.66,2.41,2.36,2.14,1.81,1.35,0.74,0.24,
    qf(27)= 0.07,0.12,0.16,0.20,0.27,1.21,1.33,1.33,1.29,1.24,1.20,1.17,1.16,
            1.15,1.15,1.16,1.19,1.23,1.26,1.24,1.24,1.21,1.19,0.89,0.50,0.13,
    qf(53)= 0.13,0.43,0.77,1.02,1.21,1.28,1.30,1.36,1.45,1.47,1.45,1.41,1.35,
            1.28,1.21,1.12,1.03,0.94,0.85,0.75,0.67,0.60,0.53,0.41,0.23,0.03,
    qf(79)= 0.15,0.64,1.10,1.40,1.47,1.38,1.25,1.15,1.09,1.05,1.03,1.03,1.03,
            1.03,1.03,1.03,1.01,1.00,0.97,0.95,0.91,0.86,0.78,0.62,0.36,0.09,
    qf(105)=0.57,0.99,1.40,1.42,1.30,1.17,1.07,1.02,0.99,1.01,1.03,1.06,1.08,
                1.10,1.07,1.11,1.10,1.06,1.01,0.94,0.87,0.78,0.68,0.53,0.31,0.08,
    qf(131)=0.27,0.50,0.75,0.90,1.02,1.11,1.19,1.27,1.33,1.35,1.36,1.34,1.20,
                1.31,1.28,1.25,1.22,1.17,1.11,1.02,0.93,0.83,0.70,0.53,0.32,0.08,
    qf(157)=0.12,0.43,0.73,0.93,1.06,1.12,1.15,1.17,1.18,1.19,1.20,1.21,1.21,
1.21,1.21,1.20,1.19,1.17,1.14,1.09,1.12,0.92,0.78,0.59,0.35,0.07,
    x(1)=0,0.25,0.75,1.25,1.75,2.25,2.75,3.25,3.75,4.25,4.75,5.25,5.75,6.25,
```

```
            6.75,7.25,7.75,8.25,8.75,9.25,9.75,10.25,10.75,11.25,11.75,12,
    x(27) = 0,0.25,0.75,1.25,1.75,2.25,2.75,3.25,3.75,4.25,4.75,5.25,5.75,6.25,
            6.75,7.25,7.75,8.25,8.75,9.25,9.75,10.25,10.75,11.25,11.75,12,
        x(53) = 0,0.25,0.75,1.25,1.75,2.25,2.75,3.25,3.75,4.25,4.75,5.25,5.75,6.25,
            6.75,7.25,7.75,8.25,8.75,9.25,9.75,10.25,10.75,11.25,11.75,12,
    x(79)= 0,0.25,0.75,1.25,1.75,2.25,2.75,3.25,3.75,4.25,4.75,5.25,5.75,6.25,
            6.75,7.25,7.75,8.25,8.75,9.25,9.75,10.25,10.75,11.25,11.75,12,
        x(105) =
0,0.25,0.75,1.25,1.75,2.25,2.75,3.25,3.75,4.25,4.75,5.25,5.75,6.25,
            6.75,7.25,7.75,8.25,8.75,9.25,9.75,10.25,10.75,11.25,11.75,12,
    x(131)=
0,0.25,0.75,1.25,1.75,2.25,2.75,3.25,3.75,4.25,4.75,5.25,5.75,6.25,
                6.75,7.25,7.75,8.25,8.75,9.25,9.75,10.25,10.75,11.25,11.75,12,
    x(157)=
0,0.25,0.75,1.25,1.75,2.25,2.75,3.25,3.75,4.25,4.75,5.25,5.75,6.25,
        6.75,7.25,7.75,8.25,8.75,9.25,9.75,10.25,10.75,11.25,11.75,12,
        ProblemTime=6.5,12.9,31.1,52.3,71.4,105.2,118.3,129,144,149,
            172, 200, 222, 243, 262, 332, 368, 404, 443, 486,
            506, 543, 572, 603, 642, 673, 711, 743, 769, 800,
            971, 999,1010,1031,1071,1083,1109,1135,1157,1200,
            1228,1250,1273,1298,1323,1350,1375,1398,1420,1432,
            1443,1457,1532,1536,1558,1584,1602,1628,1653,1672,1696,
            1709,
            1754,1799,1844,1889,1934,1979,2024,2069,2114,2159,
    qmpy =3.56,3.01,2.65,3.41,6.89,6.92,6.40,6.37,6.37,3.44,
            3.54,3.75,6.34,6.06,6.03,2.62,2.74,6.10,6.08,5.85,
            6.00,6.10,2.96,5.85,5.76,6.04,6.04,5.21,5.94,5.88,
            2.01,2.03,2.10,4.66,5.09,4.97,5.15,5.06,5.12,5.03,
            3.96,2.87,5.77,4.94,5.03,5.06,5.09,5.06,5.03,5.03,
            5.02,4.88,4.97,6.5,4.97,4.88,4.88,4.88,4.80,4.80,4.80,
            4.80,10*4.8
    slim = .05,
    $end
```


A. 34 TVO-1 BWR Rod

Battelle, Pacific Northwest Laboratories administered the international group-sponsored HBEP, which continued from 1978 to 1990. The objectives of the HBEP were to determine the effects of extended burnup on fuel rod performance, especially FGR. A variety of test rods and commercial power reactor rods were irradiated and examined under the HBEP, including nine full-length 5- and 6-cycle rods from the TVO-1 BWR in Finland (Barner et al. 1990). One of these rods was used to assess the corrosion performance of FRAPCON-3.4 for Zircaloy-2: rod number H8/36-6 from 5-cycle fuel assembly 6116.

The rod occupied position H8, which was the control blade corner position. The rod-average burnup at EOL was $44.6 \mathrm{GWd} / \mathrm{MTU}$, with a peak value (confirmed by chemical burnup analysis) of $50.9 \mathrm{GWd} / \mathrm{MTU}$. The rod-average LHGR varied between 12 and $24 \mathrm{~kW} / \mathrm{m}$ (3.3 to $7.6 \mathrm{~kW} / \mathrm{ft}$), but large variations in the peak-to-average LHGR ratio occurred due to control blade movements.

The input file used for the Zircaloy-2 corrosion assessment is shown below.

TVO-1 Rod H8/36-6

```
* GOESINS:
```

FILE05='nullfile', STATUS='scratch', FORM='FORMATTED',
CARRIAGE CONTROL='LIST'
*

* GOESOUTS:
FILE06='outH8-36-6.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'

TVO-1 rod H8/36-6
\$frpen
im=37, na=12, nr=20,
ngasr $=45$,
\$end
\$frpcon
cpl $=7.03, \operatorname{crdt}=1 ., \mathrm{dco}=0.4626$, thkcld=0.0315,
den $=95.5$, dishsd $=0.097 \mathrm{dspg}=0.395$, thkgap=0.004135,
dspgw $=0.039$, enrch $=1.38$, fgpav $=56.6$, hdish $=0.0135$,
hplt $=0.390$, icm $=2$,pitch $=0.56$,
icor $=2$, idxgas $=1$, iplant $=-3$, iq $=0, j d l p r=1, f a=1.0$,
$j n=13,13,13,13,13,13$,
totl $=12.075$, roughc $=1.978 e-5$, roughf $=8.5 e-5$, vs $=20$,
nunits $=1$, rsntr $=47, n s p=0$
flux $=0.18 e 17, \mathrm{p} 2(1)=1015.0$, $\mathrm{tw}(1)=523$. ,
go(1) $=1.14 \mathrm{e} 6$,
jst $=6 * 1,6 * 2,6 * 3,6 * 4,6 * 5,7 * 6$
$q f(1)=0.33,0.84,1.03,1.06,1.10,1.23,1.27,1.19,1.13,1.09,1.00,0.74,0.30$,
$x(1)=0,1.006,2.0125,3.01875,4.025,5.03125,6.0375$,
$7.04375,8.05,9.05625,10.0625,11.06875,12.075$,
$q f(14)=0.47,1.02,1.11,1.10,1.11,1.12,1.13,1.12,1.10,1.07,0.98,0.74,0.31$,
$x(14)=0,1.006,2.0125,3.01875,4.025,5.03125,6.0375$,
$7.04375,8.05,9.05625,10.0625,11.06875,12.075$,
$q f(27)=0.46,0.90,1.04,1.06,1.07,1.08,1.10,1.13,1.15,1.13,1.05,0.85,0.41$,
$x(27)=0,1.006,2.0125,3.01875,4.025,5.03125,6.0375$,
$7.04375,8.05,9.05625,10.0625,11.06875,12.075$,
$\mathrm{qf}(40)=0.37,0.68,0.83,0.98,1.10,1.16,1.18,1.19,1.19,1.19,1.15,0.94,0.45$,
$x(40)=0,1.006,2.0125,3.01875,4.025,5.03125,6.0375$,
$7.04375,8.05,9.05625,10.0625,11.06875,12.075$,

```
qf(53) = 0.38,0.73,0.98,1.17,1.25,1.27,1.26,1.21,1.17,1.04,0.91,0.69,0.34,
x(53) = 0,1.006,2.0125,3.01875,4.025,5.03125,6.0375,
7.04375,8.05,9.05625,10.0625,11.06875,12.075,
qf(66) = 0.40,0.74,0.90,1.00,1.06,1.09,1.11,1.12,1.15,1.22,1.20,1.06,0.49,
x(66) = 0,1.006,2.0125,3.01875,4.025,5.03125,6.0375,
7.04375,8.05,9.05625,10.0625,11.06875,12.075,
ProblemTime = 0.1, 6.5, 23.6, 68.0, 109.2, 160.3, 187.0, 220.0,
267.9, 312.6, 380.1,
432.3, 466.3, 522.1, 593.7, 647.1, 694.7, 748.6, 785.6, 820.1, 849.4,
869.2, 912.9, 934.2, 957.4, 1005.0, 1038.6, 1100.8, 1158.4, 1216.8,
1275.7, 1324.5, 1383.1, 1451.8, 1502.8, 1538.5, 1598.2,
qmpy =
5.701, 5.701, 6.595, 7.098, 7.143,
7.107, 7.040, 6.790, 6.387, 3.774,
4.354, 4.302, 4.155, 3.811, 6.585,
6.021, 5.811, 5.579, 5.558, 5.759,
5.665, 5.314, 4.564, 5.274, 4.460,
5.610, 5.613, 5.476, 5.445, 5.131,
4.802, 5.085, 4.970, 4.817, 4.933,
5.058, 4.360
slim = .05,
$end
```


A. 35 Vandellos PWR ZIRLO Rods

A joint Spanish and Japanese effort irradiated a large number of full-length fuel rods for five cycles in the Spanish PWR Vandellos 2 (CSN, ENUSA 2002). The rods were clad with ZIRLO and Mitsubishi Developed Alloy (MDA). Two of the ZIRLO rods (A06 and A12) have been modeled with FRAPCON3.4 to assess the performance of the ZIRLO corrosion model to high burnup.

The input files used for the ZIRLO corrosion assessment are shown below.

Vandellos Rod A06

```
* GOESINS:
FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
                CARRIAGE CONTROL='NONE'
*
* GOESOUTS:
FILE06='A06.out',
                STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='A06.plot',
                STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'
/****************************************************************************S
h Rods WZR 0067 A-06 with ZIRLO cladding
    $frpcn
    im=46, nr=17, ngasr=45, na=9
    $end
    $frpcon
    dco=0.374, thkcld=0.0225, thkgap=0.00325, totl=12, cpl=6.3386
    dspg=0.3189, dspgw=0.0394, vs=30
    hplt=0.387, rc=0, hdish=0.0094, dishsd=0.064
    enrch=4.5, imox=0, comp=0
    fotmtl=2, gadoln=0, ppmh2o=0, ppmn2=0
    den=95.5, deng=0, roughf=0.0000787, rsntr=100, tsint=2911
    icm=6, cldwks=0.5, roughc=0.0000197, catexf=0.05, chorg=10
    fgpav=340.84, idxgas=1
    iplant=-2, pitch=0.4291, icor=0, crdt=0, crdtr=0, flux=10*221000000000000000
    crephr=10, sgapf=31, slim=0.05, qend=0.3
    jdlpr=1, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
    ProblemTime=
    50, 100, 150, 200, 250
    300, 350, 351, 400, 450
    500, 550, 600, 650, 672
    700, 750, 800, 850, 900
    950, 1000, 1050, 1065, 1100
    1150, 1200, 1250, 1300, 1350
    1400, 1450, 1500, 1550, 1587
    1600, 1650, 1700, 1750, 1800
    1850, 1900, 1950, 2000, 2050
        2078
    qmpy=
    5.608, 5.608, 5.608, 5.608, 5.608
    5.608, 5.608, 5.608, 6.184, 6.184
    6.184, 6.184, 6.184, 6.184, 6.184
    6.148, 6.148, 6.148, 6.148, 6.148
    6.148, 6.148, 6.148, 6.148, 1.39
    1.39, 1.39, 1.39, 1.39, 1.39
    1.39, 1.39, 1.39, 1.39, 1.39
```

```
5.258, 5.258, 5.258, 5.258, 5.258
5.258, 5.258, 5.258, 5.258, 5.258
    5.258
nsp=0
p2= 2250, tw= 550, go= 2550000
iq=0, fa=1
x(1)=
0, 1.2, 2.4, 3.6, 4.8
6, 7.2, 8.4, 9.6, 10.8
    12
qf(1)=
2, 6, 7, 7.1, 7
6.8,6.6,6.65, 6.5, 5.4
    2.5
x(12)=
0, 1.2, 2.4, 3.6, 4.8
6, 7.2, 8.4, 9.6, 10.8
    12
qf(12)=
2, 5.2, 6, 6.2, 6.05
6, 5.8, 5.8, 5.7, 4.7
    2.2
x(23)=
0, 1.2, 2.4, 3.6, 4.8
6, 7.2, 8.4, 9.6, 10.8
    12
qf(23)=
2.2, 6, 7, 7, 7
6.8,6.7,6.7,6.5, 5.5
    2.8
x(34)=
0, 1.2, 2.4, 3.6, 4.8
6, 7.2, 8.4, 9.6, 10.8
    12
qf(34)=
0.5, 1.8, 2.2, 2.3, 2.2
2.2, 2.2, 2.2, 2.2, 1.9
    0.8
x(45)=
0, 1.2, 2.4, 3.6, 4.8
6, 7.2, 8.4, 9.6, 10.8
    12
qf(45)=
2.3, 6.2, 7, 7.1, 6.9
6.7,6.6,6.5, 6.4, 5.2
        3
jn=11,11,11,11,11
jst=
1, 1, 1, 1, 1
1, 1, 1, 2, 2
2, 2, 2, 2, 2
3, 3, 3, 3, 3
3, 3, 3, 3, 4
4, 4, 4, 4, 4
4, 4, 4, 4, 4
5, 5, 5, 5, 5
5, 5, 5, 5, 5
```

\$end

Vandellos Rod A12

```
* GOESINS:
FILEO5='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
                CARRIAGE CONTROL='NONE'
*
* GOESOUTS:
FILE06='A12.out',
        STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='A12.plot',
                STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'
/*****************************************************************************
h Rods WZR 0058 A-12 with ZIRLO cladding
    $frpen
    im=46, nr=17, ngasr=45, na=9
    $end
    $frpcon
    dco=0.374, thkcld=0.0225, thkgap=0.00325, totl=12, cpl=6.6142
    dspg=0.3189, dspgw=0.0394, vs=30
    hplt=0.387, rc=0, hdish=0.0094, dishsd=0.064
    enrch=4.5, imox=0, comp=0
    fotmtl=2, gadoln=0, ppmh2o=0, ppmn2=0
    den=95.5, deng=0, roughf=0.0000787, rsntr=100, tsint=2911
    icm=6, cldwks=0.5, roughc=0.0000197, catexf=0.05, chorg=10
    fgpav=340.84, idxgas=1
    iplant=-2, pitch=0.4291, icor=0, crdt=0, crdtr=0, flux=10*221000000000000000
    crephr=10, sgapf=31, slim=0.05, qend=0.3
    jdlpr=1, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
    ProblemTime=
    50, 100, 150, 200, 250
    300, 350, 351, 400, 450
    500, 550, 600, 650, 672
    700, 750, 800, 850, 900
    950, 1000, 1050, 1065, 1100
    1150, 1200, 1250, 1300, 1350
    1400, 1450, 1500, 1550, 1587
    1600, 1650, 1700, 1750, 1800
    1850, 1900, 1950, 2000, 2050
        2078
    qmpy=
    7.053, 7.053, 7.053, 7.053, 7.053
    7.053, 7.053, 7.053, 3.895, 3.895
    3.895, 3.895, 3.895, 3.895, 3.895
    6.404, 6.404, 6.404, 6.404, 6.404
    6.404, 6.404, 6.404, 6.404, 1.64
    1.64, 1.64, 1.64, 1.64, 1.64
    1.64, 1.64, 1.64, 1.64, 1.64
    5.395, 5.395, 5.395, 5.395, 5.395
    5.395, 5.395, 5.395, 5.395, 5.395
        5.395
    nsp=1
    p2=
    2249.54, 2249.54, 2249.54, 2249.54, 2249.54
    2249.54, 2249.54, 2249.54, 2249.54, 2249.54
    2249.54, 2249.54, 2249.54, 2249.54, 2249.54
```

```
2249.54, 2249.54, 2249.54, 2249.54, 2249.54
2249.54, 2249.54, 2249.54, 2249.54, 2249.54
2249.54, 2249.54, 2249.54, 2249.54, 2249.54
2249.54, 2249.54, 2249.54, 2249.54, 2249.54
2249.54, 2249.54, 2249.54, 2249.54, 2249.54
2249.54, 2249.54, 2249.54, 2249.54, 2249.54
2249.54
tw=
558.3, 558.3, 558.3, 558.3, 558.3
558.3, 558.3, 558.3, 558.3, 558.3
558.3, 558.3, 558.3, 558.3, 558.3
558.3, 558.3, 558.3, 558.3, 558.3
558.3, 558.3, 558.3, 558.3, 558.3
558.3, 558.3, 558.3, 558.3, 558.3
558.3, 558.3, 558.3, 558.3, 558.3
554.9, 554.9, 554.9, 554.9, 554.9
554.9, 554.9, 554.9, 554.9, 554.9
    554.9
go=
2550000, 2550000, 2550000, 2550000, 2550000
2550000, 2550000, 2550000, 2550000, 2550000
2550000, 2550000, 2550000, 2550000, 2550000
2550000, 2550000, 2550000, 2550000, 2550000
2550000, 2550000, 2550000, 2550000, 2550000
2550000, 2550000, 2550000, 2550000, 2550000
2550000, 2550000, 2550000, 2550000, 2550000
2550000, 2550000, 2550000, 2550000, 2550000
2550000, 2550000, 2550000, 2550000, 2550000
2550000
iq=0, fa=1
x(1)=
0, 1.2, 2.4, 3.6, 4.8
6, 7.2, 8.4, 9.6, 10.8
    12
qf(1)=
2, 6, 7, 7.1, 7
6.8, 6.6, 6.65, 6.5, 5.4
    2.5
x(12)=
0, 1.2, 2.4, 3.6, 4.8
6, 7.2, 8.4, 9.6, 10.8
    12
qf(12)=
2, 5.2, 6, 6.2, 6.05
6, 5.8, 5.8, 5.7, 4.7
    2.2
x(23)=
0, 1.2, 2.4, 3.6, 4.8
6, 7.2, 8.4, 9.6, 10.8
    12
qf(23)=
2.2, 6, 7, 7, 7
6.8,6.7, 6.7, 6.5, 5.5
    2.8
x(34)=
0, 1.2, 2.4, 3.6, 4.8
6, 7.2, 8.4, 9.6, 10.8
```

```
            1 2
qf(34)=
0.5, 1.8, 2.2, 2.3, 2.2
2.2, 2.2, 2.2, 2.2, 1.9
    0.8
x(45)=
0, 1.2, 2.4, 3.6, 4.8
6, 7.2, 8.4, 9.6, 10.8
    12
qf(45)=
2.3, 6.2, 7, 7.1, 6.9
6.7, 6.6, 6.5, 6.4, 5.2
jn=11,11,11,11,11
jst=
1, 1, 1, 1, 1
1, 1, 1, 2, 2
2, 2, 2, 2, 2
3, 3, 3, 3, 3
3, 3, 3, 3, 4
4, 4, 4, 4, 4
4, 4, 4, 4, 4
5, 5, 5, 5, 5
5, 5, 5, 5, 5
$end
```


A. 36 Gravelines-5 PWR M5 Rod

One high-burnup rod was taken from the French reactor Gravelines-5 and refabricated for the reactivityinitiated accident (RIA) test CIP0-1, performed in the CABRI reactor, France (Segura and Bernaudat 2002). This rod, N05, was clad with M5. Before refabrication, rod N05 was examined and the oxide layer thickness was measured. This full-length commercial rod has been modeled with FRAPCON-3.4 to assess the performance of the M5 corrosion model to high burnup.

The input file used for the M5 corrosion assessment is shown below.

```
Gravelines-5 Rod N05
* GOESINS:
FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
                CARRIAGE CONTROL='NONE'
*
* GOESOUTS:
FILE06='N05.Out',
        STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='N05.plot',
        STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'
/***************************************************************************French
Rod 4021 N05 with M5 cladding
    $frpcn
    im=94, nr=17, ngasr=45, na=9
    $end
    $frpcon
    dco=0.374, thkcld=0.02461, thkgap=0.00323, totl=11.98727, cpl=6.8311
    dspg=0.311, dspgw=0.0571, vs=43
    hplt=0.5374, rc=0, hdish=0.0122, dishsd=0.0411
    enrch=4.5, imox=0, comp=0
    fotmtl=2, gadoln=0, ppmh2o=0, ppmn2=0
    den=95.31, deng=0, roughf=0.0000787, rsntr=71, tsint=2911
    icm=5, cldwks=0, roughc=0.0000197, catexf=0.05, chorg=10
    fgpav=217.56, idxgas=1
iplant=-2, pitch=0.4291, icor=0, crdt=0, crdtr=0, flux=10*221000000000000000
    crephr=10, sgapf=31, slim=0.05, qend=0.3
    jdlpr=0, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
    ProblemTime=
    8, 64.2, 104.5, 137.7, 166.7
    196.9, 225.5, 253.1, 270.2, 302.4
    330.6, 353.4, 371.3, 372.8, 384.8
    399.9, 414.7, 427.7, 441.6, 454.9
    467.4, 489, 514.3, 536.4, 569.4
    600.4, 614.7, 621, 628.7, 649.9
    651.7, 670.6, 685.9, 704.1, 715.8
    728.1, 740.5, 754.3, 777.8, 800.8
    833.4, 863.9, 889.6, 912.7, 936.4
    957.6, 982.1, 982.9, 993.8, 1028.5
    1052.8, 1079.2, 1096.1, 1135.6, 1156.2
    1185.7, 1214.2, 1240, 1259.4, 1278.4
    1298.4, 1313.7, 1315.4, 1332.6, 1360
    1386.1, 1414.1, 1443.5, 1464.3, 1490.1
    1518, 1540.3, 1567, 1594, 1611.9
    1626.6, 1641.8, 1656.3, 1657.3, 1674.3
    1701.9, 1727.3, 1750.5, 1774.8, 1800.1
```

```
1825.3, 1850.6, 1869.2, 1894.9, 1911.2
1932.4, 1952.6, 1973.6, 1976.1
qmpy=
0.047, 4.716, 4.716, 4.774, 4.744
4.846, 4.842, 4.924, 4.932, 4.923
4.916, 4.926, 4.711, 4.419, 0
5.174, 5.174, 5.163, 5.202, 5.198
5.271, 5.3, 5.264, 5.274, 5.321
5.325, 5.347, 5.397, 5.267, 5.105
4.688, 0.059, 5.879, 5.97, 5.959
5.924, 5.939, 5.903, 5.85, 5.838
5.797, 5.782, 5.769, 5.745, 5.785
5.466, 5.002, 3.879, 0.053, 5.313
5.364, 5.419, 5.449, 5.454, 5.495
5.528, 5.542, 5.591, 5.621, 5.594
5.453,4.988, 4.395, 0.044, 4.388
4.415, 4.451, 4.492, 4.653, 4.637
4.671,4.753,4.794, 4.799, 4.874
4.685, 4.353, 3.903, 3.481, 0.05
4.993, 5.004, 4.988, 5.005, 5.009
5.033, 5.042, 5.073, 5.08, 5.1
5.101, 4.904, 4.447, 3.706
nsp=0
p2= 2249.54, tw= 558.32, go= 2550000
iq=0, fa=1
x(1)=
0, 0.86732, 1.71532, 2.66152, 3.45171
5.03281, 6.48783, 8.10121, 9.30446, 10.38422
11.11811, 11.98727
qf(1)=
0.4227, 0.8016, 1.0596, 1.1694, 1.1859
1.1859, 1.1694, 1.142, 1.0706, 0.8675
0.5765, 0.269
x(13)=
0, 0.60082, 1.54951, 2.87766, 4.74337
6.45102, 8.06375, 9.32864, 10.27733, 10.75167
11.98727
qf(13)=
0.4741, 0.7443, 0.9928, 1.0209, 1.0272
1.0555, 1.1388, 1.1834, 1.2059, 1.0959
    0.5616
x(24)=
0, 1.03287, 1.95144, 3.02687, 4.6085
6.31663, 7.96299, 9.67201, 10.33596, 10.93383
11.49521, 11.99524
qf(24)=
0.4558, 0.9283, 0.9945, 1.006, 1.0286
1.0513, 1.1398, 1.2009, 1.1957, 1.0642
0.7185, 0.4552
x(36)=
0, 0.55249, 1.30466, 1.4937, 2.78625
4.77306, 6.38018, 8.01814, 9.49836, 10.22257
10.82405, 11.27152, 11.99524
qf(36)=
0.4118, 0.6808, 0.9004, 0.9114, 0.9498
0.9773, 1.0541, 1.1639, 1.2737, 1.3341
1.2408, 0.9827, 0.4447
```

```
    x(49)=
    0, 0.67585, 1.52831, 2.7937, 4.50056
    6.17533, 7.62874, 9.30161, 10.21706, 10.85026
11.99524
    qf(49)=
    0.4667, 0.8784, 0.9388, 0.9169, 0.9498
    1.0047, 1.0596, 1.1969, 1.2682, 1.2353
    0.7467
    x(60)=
    0, 0.49275, 1.95738, 2.9731, 4.65427
    6.36627, 7.98192, 9.37444, 10.3228, 11.0792
11.99524
    qf(60)=
    0.4282, 0.7631, 1.0486, 1.109, 1.1584
    1.1694, 1.1255, 1.0267, 0.9114, 0.7192
        0.4502
    jn=12,11,12,13,11,11
    jst=
    1, 1, 1, 1, 1
    1, 1, 1, 1, 1
    1, 1, 1, 1, 1
    2, 2, 2, 2, 2
    2, 2, 2, 2, 2
    2, 2, 2, 2, 2
    2, 2, 3, 3, 3
    3, 3, 3, 3, 3
    3, 3, 3, 3, 3
    3, 3, 3, 3, 4
    4, 4, 4, 4, 4
    4, 4, 4, 4, 4
    4, 4, 4, 4, 5
    5, 5, 5, 5, 5
    5, 5, 5, 5, 5
    5, 5, 5, 5, 5
    6, 6, 6, 6, 6
    6, 6, 6, 6, 6
    6, 6, 6, 6
    $end
```


A. 37 GAIN UO $\mathbf{2}^{-}-\mathrm{Gd}_{2} \mathrm{O}_{3}$ Rods

The GAIN Programme, which was an international program lead by Belgonucleaire, irradiated four rods with two different doping concentrations. Rods 301 and 302 were doped with $3 \mathrm{wt} \% \mathrm{Gd}$ while rods 701 and 702 were doped with $7 \mathrm{wt} \% \mathrm{Gd}$. All four rods were irradiated in BR3 for four cycles, but rod 701 was removed for transient tests between cycles in BR2 (Hoffmann and Kraus, 1984, Manley et al. 1989, Reindl et al. 1989). Fission gas release measurements were obtained from each rod.

The input files used for the $\mathrm{UO}_{2}-\mathrm{Gd}_{2} \mathrm{O}_{3} \mathrm{FGR}$ assessment are shown below.
GAIN Rod 301


```
crephr=10, sgapf=31, slim=0.05, qend=0.3, ngasmod=2
jdlpr=1, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
ProblemTime=
0.04, 19.12, 19.16, 64.18, 64.22
109.62, 109.66, 149.12, 149.16, 191.82
191.86, 213.23, 213.27, 260.55, 260.6
286.93, 286.97, 312.69, 312.73, 342.78
342.83, 371.43, 371.47, 408.56, 408.6
417.24, 417.28, 425.52, 425.56, 441.42
441.46, 441.5, 474.48, 474.52, 497.32
497.36, 508.77, 508.82, 514.59, 514.63
525.15, 525.19, 553.84, 553.89, 569.17
569.22, 584.42, 584.47, 595.26, 595.3
632.29, 632.33, 658.12, 658.16, 678.69
678.74, 694.4, 694.44, 724.84, 724.88
752.66, 752.7, 783.54, 783.58, 813.45
813.49, 836.98, 837.02, 854.72, 854.76
854.8, 861.88, 861.93, 897.63, 897.68
924.68, 924.72, 927.2, 927.24, 951.32
951.36, 965.32, 965.37, 995.57, 995.61
1013.64, 1013.68, 1053.1, 1053.14, 1078.89
1078.93, 1099.2, 1099.24, 1128.83, 1128.87
1162, 1162.04, 1188.07, 1188.11
qmpy=
1.458, 1.458, 1.821, 1.821, 2.311
2.311, 3.035, 3.035, 3.752, 3.752
4.204, 4.204, 4.587, 4.587, 4.877
4.877, 4.902, 4.902, 5.278, 5.278
5.301, 5.301, 5.321, 5.321, 4.745
4.745,4.153, 4.153, 3.442, 3.442
0, 4.351, 4.351, 4.61, 4.61
2.995, 2.995, 4.61, 4.61, 3.579
3.579, 4.534, 4.534, 3.942, 3.942
4.511, 4.511, 4.288, 4.288, 4.326
4.326, 4.077, 4.077, 3.899, 3.899
3.592, 3.592, 3.871, 3.871, 3.907
3.907, 3.901, 3.901, 3.889, 3.889
3.879, 3.879, 3.614, 3.614, 0
4.699, 4.699, 5.243, 5.243, 5.205
5.205,3.848, 3.848, 5.184, 5.184
4.61, 4.61, 5.045, 5.045, 5.034
5.034, 4.915, 4.915, 4.92, 4.92
4.943, 4.943, 4.958, 4.958, 4.933
4.933, 4.882, 4.882, 0
nsp=0
p2= 2199, tw= 491, go= 2100000
iq=0, fa=1
x(1)=
0, 0.13678, 0.41033, 0.68389, 0.95745
1.231, 1.50456, 1.77812, 2.05167, 2.32523
2.59879, 2.87234, 3.1459, 3.28281
qf(1)=
2.6, 3, 3.8, 5.4, 7.2
8.5, 9.1, 8.9, 8.2, 6.8
4.9, 3.3, 2.6, 2.24966418805469
x(15)=
0, 0.13678, 0.41033, 0.68389, 0.95745
```

```
1.231, 1.50456, 1.77812, 2.05167, 2.32523
2.59879, 2.87234, 3.1459, 3.28281
qf(15)=
5.25, 6.5, 9, 14.4, 19.5
22.2, 23.2, 22.9, 21.4, 13.4
13.2, 9.1, 5.8, 4.14841688654353
x(29)=
0, 0.13678, 0.41033, 0.68389, 0.95745
1.231, 1.50456, 1.77812, 2.05167, 2.32523
2.59879, 2.87234, 3.1459, 3.28281
qf(29)=
8.7, 10, 12.6, 17.4, 20.8
22.4, 22.9, 22.7, 21.9, 20.2
16.5, 11.9, 9.4, 8.14880067162389
x(43)=
0, 0.13678, 0.41033, 0.68389, 0.95745
1.231, 1.50456, 1.77812, 2.05167, 2.32523
2.59879, 2.87234,3.1459, 3.28281
qf(43)=
5.2, 5.8, 7, 9.4, 11.8
13.2, 13.7, 13.5, 12.7, 11
8.5, 6.2, 5.1, 4.54947229551451
x(57)=
0, 0.13678, 0.41033, 0.68389, 0.95745
1.231, 1.50456, 1.77812, 2.05167, 2.32523
2.59879, 2.87234, 3.1459, 3.28281
qf(57)=
6.95, 7.8, 9.5, 12.8, 16
18, 18.8, 18.5, 17.3, 15
11.6, 8.4, 6.8, 5.99923242983929
x(71)=
0, 0.13678, 0.41033, 0.68389, 0.95745
1.231, 1.50456, 1.77812, 2.05167, 2.32523
2.59879, 2.87234, 3.1459, 3.28281
qf(71)=
7.05, 7.9, 9.6, 12.7, 15.3
16.7, 17.2, 16.9, 16.1, 14.4
11.4, 8.5, 6.9, 6.09923242983929
x(85)=
0, 0.13678, 0.41033, 0.68389, 0.95745
1.231, 1.50456, 1.77812, 2.05167, 2.32523
2.59879, 2.87234, 3.1459, 3.28281
qf(85)=
10.5, 11.6, 13.8, 17.3, 20
21.4, 21.9, 21.6, 20.5, 18.7
15.6, 12.3, 10.2, 9.14899256416407
x(99)=
0, 0.13678, 0.41033, 0.68389, 0.95745
1.231, 1.50456, 1.77812, 2.05167, 2.32523
2.59879, 2.87234, 3.1459, 3.28281
qf(99)=
10.05, 11.1, 13.2, 16.5, 19.3
20.9, 21.5, 21.2, 20.1, 18.1
14.9, 11.7, 9.7, 8.69904053729911
x(113) =
0,0.13678, 0.41033, 0.68389, 0.95745
1.231, 1.50456, 1.77812, 2.05167, 2.32523
```

```
2.59879, 2.87234, 3.1459, 3.28281
qf(113)=
9.6, 10.6, 12.6, 15.8, 18.7
20.5, 21.3, 21.1, 20, 18
14.9, 11.8, 9.9, 8.94908851043416
jn=14,14,14,14,14,14,14,14,14
jst=
1, 1, 1, 1, 1
1, 1, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 3, 3, 3
3, 3, 3, 3, 3
3, 3, 3, 3, 3
3, 4, 4, 4, 4
4, 4, 4, 4, 4
4, 4, 4, 4, 4
4, 5, 5, 5, 5
5, 5, 5, 5, 5
5, 5, 5, 6, 6
6, 6, 6, 6, 6
6, 6, 6, 6, 6
7, 7, 7, 7, 7
7, 7, 7, 7, 7
7, 8, 8, 8, 8
8, 8, 8, 8, 9
9, 9, 9, 9, 9
9, 9, 9
$end
```


GAIN Rod 302

```
*********************************************************************************
* FRAPCON-3, steady-state fuel rod analysis code *
*-----------------------------------------------------------------------------
* *
* CASE DESCRIPTION:GAIN Gd doped rod with 3% gadolinia
*
*UNIT FILE DESCRIPTION *
*---- --------------------------------------------------------------------
* Output : *
* STANDARD PRINTER OUTPUT *
* *
* Scratch: *
* SCRATCH INPUT FILE FROM ECHO1 *
* *
* Input: FRAPCON-3 INPUT FILE (UNIT 55)
*
*
*****************************************************************************
* GOESINS:
FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
    CARRIAGE CONTROL='NONE'
*
* GOESOUTS:
FILE06='GAIN-302.out',
        STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='GAIN-302.plot',
        STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'
```

```
/*****************************************************************************
GAIN Gd doped rod with 3% gadolinia
    $frpon
    im=99, nr=17, ngasr=45, na=9
    $end
    $frpcon
    dco=0.3794, thkcld=0.02402, thkgap=0.00356, totl=3.2874, cpl=2.2992
    dspg=0.3241, dspgw=0.0394, vs=10
    hplt=0.4193, rc=0, hdish=0.0087, dishsd=0.0637
    enrch=3.483, imox=0, comp=0, ifba=0, b10=0, zrb2thick=0, zrb2den=90
    fotmtl=2, gadoln=0.03, ppmh2o=0, ppmn2=0
    den=93.7, deng=0, roughf=0.0000433, rsntr=90, tsint=2911
    icm=4, cldwks=0.5, roughc=0.0000197, catexf=0.05, chorg=10
    fgpav=377.1, idxgas=1, nunits=1, zr2vintage=1
```

 iplant=-2, pitch=0.4921, icor=0, crdt=0, crdtr=0, flux=10*22100000000000000
 crephr=10, sgapf=31, slim=0.05, qend=0.3, ngasmod=2
 jdlpr=1, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
 ProblemTime=
 \(0.04,19.12,19.16,64.18,64.22\)
 109.62, 109.66, 149.12, 149.16, 191.82
 191.86, 213.23, 213.27, 260.55, 260.6
 286.93, 286.97, 312.69, 312.73, 342.78
 \(342.83,371.43,371.47,408.56,408.6\)
 417.24, 417.28, 425.52, 425.56, 441.42
 \(441.46,441.5,474.48,474.52,497.32\)
 497.36, 508.77, 508.82, 514.59, 514.63
 525.15, 525.19, 553.84, 553.89, 569.17
 569.22, 584.42, 584.47, 595.26, 595.3
 632.29, 632.33, 658.12, 658.16, 678.69
 678.74, 694.4, 694.44, 724.84, 724.88
 752.66, 752.7, 783.54, 783.58, 813.45
 813.49, 836.98, 837.02, 854.72, 854.76
 854.8, 861.88, 861.93, 897.63, 897.68
 924.68, 924.72, 927.2, 927.24, 951.32
 951.36, 965.32, 965.37, 995.57, 995.61
 1013.64, 1013.68, 1053.1, 1053.14, 1078.89
 1078.93, 1099.2, 1099.24, 1128.83, 1128.87
 1162, 1162.04, 1188.07, 1188.11
 qmpy=
 1.468, 1.468, 1.842, 1.842, 2.339
 2.339, 3.081, 3.081, 3.805, 3.805
 \(4.255,4.255,4.737,4.737,4.915\)
 \(4.915,4.951,4.951,5.86,5.86\)
 \(5.065,5.065,5.365,5.365,4.788\)
 \(4.788,4.191,4.191,3.477,3.477\)
 \(0,4.326,4.326,4.567,4.567\)
 2.972, 2.972, 4.318, 4.318, 3.546
 \(3.546,4.501,4.501,3.909,3.909\)
 \(4.473,4.473,4.247,4.247,4.285\)
 \(4.285,4.026,4.026,3.856,3.856\)
 \(3.566,3.566,3.828,3.828,3.856\)
 \(3.856,3.851,3.851,3.841,3.841\)
 \(3.825,3.825,3.564,3.564,0\)
 \(4.448,4.448,4.945,4.945,4.9\)
 \(4.9,3.62,3.62,4.872,4.872\)
    ```
    4.323,4.323, 4.704, 4.704, 4.689
    4.689, 4.549,4.549, 4.524, 4.524
    4.514, 4.514, 4.506, 4.506, 4.486
    4.486, 4.465, 4.465, 0
    nsp=0
    p2= 2199, tw= 491, go= 2100000
    iq=0, fa=1
    x(1)=
    0, 0.08202, 0.24606, 0.49213, 0.82021
    1.14829, 1.47638, 1.80446, 2.13255, 2.46063
    2.78871, 3.03478, 3.19882, 3.2874
    qf(1)=
    0.498269896193772,0.560553633217993, 0.685121107266436, 0.955017301038062,
1.20415224913495
    1.37024221453287, 1.43252595155709, 1.41176470588235, 1.30795847750865,
    1.12110726643599
    0.85121107266436,0.622837370242215,0.477508650519031,0.399031141868512
    x(15)=
    0, 0.08202, 0.24606, 0.49213, 0.82021
    1.14829, 1.47638, 1.80446, 2.13255, 2.46063
    2.78871, 3.03478, 3.19882, 3.2874
    qf(15)=
    0.430344827586207, 0.496551724137931, 0.628965517241379, 0.910344827586207,
    1.20827586206897
    1.42344827586207, 1.52275862068966, 1.48965517241379, 1.37379310344828,
    1.14206896551724
    0.811034482758621,0.562758620689655,0.430344827586207,0.358841379310345
    x(29)=
    0, 0.08202, 0.24606, 0.49213, 0.82021
    1.14829, 1.47638, 1.80446, 2.13255, 2.46063
    2.78871, 3.03478, 3.19882, 3.2874
    qf(29)=
    0.395713107996702, 0.455070074196208, 0.573784006595218, 0.830997526793075,
    1.17724649629019
    1.38499587798846, 1.6916735366859, 1.67188788128607, 1.44435284418796,
    1.10799670239077
    0.751854905193735,0.514427040395713, 0.395713107996702,0.331607584501237
    x(43)=
    0, 0.08202, 0.24606, 0.49213, 0.82021
    1.14829, 1.47638, 1.80446, 2.13255, 2.46063
    2.78871, 3.03478, 3.19882, 3.2874
    qf(43)=
    0.308059701492537, 0.386865671641791, 0.544477611940298, 0.902686567164179,
    1.26805970149254
    1.49014925373134, 1.58328358208955, 1.55462686567164, 1.43283582089552,
    1.18925373134328
    0.816716417910448, 0.487164179104478, 0.343880597014925, 0.266507462686567
    x(57)=
    0,0.08202, 0.24606, 0.49213, 0.82021
    1.14829, 1.47638, 1.80446, 2.13255, 2.46063
    2.78871, 3.03478, 3.19882, 3.2874
    qf(57)=
    0.427911749615187, 0.511031298101591, 0.677270395074397, 0.985120574653669,
    1.2252437147255
    1.33606977937404, 1.37301180092355, 1.36069779374038, 1.30528476141611,
    1.1821446895844
    0.935864545920985,0.634171369933299,0.474089276552078,0.387644946126219
```

```
    x(71) =
    0, 0.08202, 0.24606, 0.49213, 0.82021
    1.14829, 1.47638, 1.80446, 2.13255, 2.46063
    2.78871, 3.03478, 3.19882, 3.2874
    qf(71)=
    0.548295454545455, 0.613636363636364, 0.744318181818182, 1, 1.1875
    1.26704545454545, 1.28977272727273, 1.27840909090909, 1.24431818181818,
1.14772727272727
    0.948863636363636,0.704545454545455, 0.573863636363636,0.503295454545455
    x(85)=
    0, 0.08202, 0.24606, 0.49213, 0.82021
    1.14829, 1.47638, 1.80446, 2.13255, 2.46063
    2.78871, 3.03478, 3.19882, 3.2874
    qf(85)=
    0.521432765707575, 0.584850264239577, 0.711685261303582, 0.958308866705813,
1.19788608338227
    1.33881385789783, 1.40223135642983, 1.3810921902525, 1.28948913681738,
1.12037580739871
    0.866705813270699,0.634174985320023,0.514386376981797,0.449700528479154
    x(99)=
    0, 0.08202, 0.24606, 0.49213, 0.82021
    1.14829, 1.47638, 1.80446, 2.13255, 2.46063
    2.78871, 3.03478, 3.19882, 3.2874
    qf(99)=
    0.533510285335103, 0.59721300597213, 0.724618447246185, 0.971466489714665,
1.20238885202389
    1.32979429329794, 1.37757133377571, 1.35368281353683, 1.27405441274054,
    1.1227604512276
    0.875912408759124,0.644990046449901,0.525547445255474,0.461048440610484
    x(113)=
    0, 0.08202, 0.24606, 0.49213, 0.82021
    1.14829, 1.47638, 1.80446, 2.13255, 2.46063
    2.78871, 3.03478, 3.19882, 3.2874
    qf(113)=
    0.577334283677833, 0.641482537419815, 0.769779044903778, 1.00071275837491,
    1.18888096935139
    1.2744119743407, 1.30862437633642, 1.29151817533856, 1.23164647184604,
    1.12045616535994
    0.906628652886671, 0.6928011404134, 0.573057733428368, 0.50839629365645
    jn=14,14,14,14,14,14,14,14,14
    jst=
    1, 1, 2, 2, 3
    3, 3, 3, 3, 3
    4, 4, 2, 2, 1
    1, 5, 5, 5, 5
    5, 5, 6, 6, 6
    6, 6, 6, 6, 6
    6, 7, 7, 7, 7
    7, 7, 7, 7, 7
    7, 7, 7, 7, 7
    7, 7, 8, 8, 8
    8, 8, 8, 8, 8
    8, 8, 8, 8, 8
    8, 8, 8, 9, 9
    9, 9, 9, 9, 9
    9, 9, 9, 9, 9
    9, 9, 9, 9, 9
```

9, 9, 9, 9, 9
9, 9, 9, 9, 9
9, 9, 9, 9, 9
9, 9, 9, 9
\$end

GAIN Rod 701

```
******************************************************************************
* FRAPCON-3, steady-state fuel rod analysis code *
*------------------------------------------------------------------------------
* *
* CASE DESCRIPTION:GAIN Gd doped rod with 7% gadolinia *
*UNIT FILE DESCRIPTION *
*---- ------------------------------------------------------------
* Output : *
* STANDARD PRINTER OUTPUT *
* *
* Scratch: *
* SCRATCH INPUT FILE FROM ECHO1 *
* *
* Input: FRAPCON-3 INPUT FILE (UNIT 55)
*
*
*****************************************************************************
* GOESINS:
FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
            CARRIAGE CONTROL='NONE'
*
* GOESOUTS:
FILE0 6='GAIN-701.Out',
                STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='GAIN-701.plot',
                STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'
/*****************************************************************************
GAIN Gd doped rod with 7% gadolinia
    $frpcn
    im=111, nr=17, ngasr=45, na=9
    $end
    $frpcon
    dco=0.38, thkcld=0.02431, thkgap=0.00362, totl=3.26083, cpl=2.6181
    dspg=0.3241, dspgw=0.0394, vs=10
    hplt=0.4248, rc=0, hdish=0.0083, dishsd=0.0636
    enrch=3.483, imox=0, comp=0, ifba=0, b10=0, zrb2thick=0, zrb2den=90
    fotmtl=2, gadoln=0.07, ppmh2o=0, ppmn2=0
    den=91.88, deng=0, roughf=0.0000433, rsntr=90, tsint=2911
    icm=4, cldwks=0.5, roughc=0.0000197, catexf=0.05, chorg=10
    fgpav=377.1, idxgas=1, nunits=1, zr2vintage=1
    iplant=-2, pitch=0.4921, icor=0, crdt=0, crdtr=0, flux=10*221000000000000000
    crephr=10, sgapf=31, slim=0.05, qend=0.3, ngasmod=2
    jdlpr=1, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
    ProblemTime=
    0.04, 19.12, 19.16, 64.18, 64.22
    109.62, 109.66, 149.12, 149.16, 191.82
    191.86, 213.23, 213.27, 260.55, 260.6
```

```
286.93, 286.97, 312.69, 312.73, 342.78
342.83, 371.43, 371.47, 408.56, 408.6
417.24, 417.28, 425.52, 425.56, 441.42
441.46, 441.5, 442.42, 442.421, 442.422
442.423, 442.46, 442.5, 475.48, 475.52
498.32, 498.37, 509.78, 509.82, 515.59
515.64, 526.15, 526.2, 554.85, 554.89
570.18, 570.22, 585.43, 585.47, 596.27
596.31, 633.29, 633.33, 659.12, 659.16
679.7, 679.74, 695.41, 695.45, 725.84
725.89, 753.66, 753.7, 784.54, 784.58
814.45, 814.49, 837.98, 838.03, 855.72
855.76, 855.8, 856.72, 856.721, 856.73
856.731, 856.77, 856.81, 863.89, 863.93
899.64, 899.68, 926.68, 926.73, 929.21
929.25, 953.33, 953.37, 967.33, 967.37
997.58, 997.62, 1015.65, 1015.69, 1055.11
1055.15, 1080.9, 1080.94, 1101.21, 1101.25
1130.84, 1130.88, 1164, 1164.05, 1190.08
1190.12
qmpy=
1.184, 1.184, 1.445, 1.445, 1.783
1.783, 2.273, 2.273, 2.804, 2.804
3.241, 3.241, 3.851, 3.851, 4.356
4.356, 4.643, 4.643, 5.324, 5.324
5.545, 5.545, 5.738, 5.738, 5.179
5.179, 4.531, 4.531, 3.757, 3.757
0, 3.373, 3.373, 3.813, 3.813
1.466, 0, 4.046, 4.046, 4.308
4.308, 2.799, 2.799, 4.313, 4.313
3.345, 3.345, 4.244, 4.244, 3.696
3.696, 4.244, 4.244, 4.034, 4.034
4.077, 4.077, 3.833, 3.833, 3.675
3.675, 3.404, 3.404, 3.65, 3.65
3.681, 3.681, 3.681, 3.681, 3.665
3.665, 3.65, 3.65, 3.404, 3.404
0, 3.373, 3.373, 4.984, 4.984
1.466, 0, 4.77, 4.77, 5.276
5.276, 5.202, 5.202, 3.823, 3.823
5.128, 5.128, 4.534, 4.534, 4.923
4.923,4.874, 4.874, 4.709, 4.709
4.671,4.671, 4.648, 4.648, 4.623
4.623,4.575,4.575,4.514, 4.514
    0
nsp=0
p2= 2199, tw= 491, go= 2100000
iq=0, fa=1
x(1) =
0, 0.13587, 0.4076, 0.67934, 0.95107
1.22281, 1.49455, 1.76628, 2.03802, 2.30975
2.58149, 2.85322, 3.12496, 3.26083
qf(1)=
1.95, 2.3, 3, 4.3, 5.8
6.8, 7.2, 7.1, 6.5, 5.4
3.9, 2.6, 2, 1.7
x(15)=
0, 0.13587, 0.4076, 0.67934, 0.95107
```

```
1.22281, 1.49455, 1.76628, 2.03802, 2.30975
2.58149, 2.85322, 3.12496, 3.26083
qf(15)=
2.7, 3.5, 5.1, 8.8, 13.4
16.6, 18.1, 17.8, 16, 12.6
8, 4.6, 3.1, 2.35
x(29)=
0, 0.13587, 0.4076, 0.67934, 0.95107
1.22281, 1.49455, 1.76628, 2.03802, 2.30975
2.58149, 2.85322, 3.12496, 3.26083
qf(29)=
6.85, 8.5, 11.8, 18.1, 23
24.6, 24.9, 24.7, 24.1, 22.3
17.3, 11.1, 7.9, 6.3
x(43)=
0, 0.13587, 0.4076, 0.67934, 0.95107
1.22281, 1.49455, 1.76628, 2.03802, 2.30975
2.58149, 2.85322, 3.12496, 3.26083
qf(43)=
3.45, 5.8, 10.5, 15.6, 21
23, 20.3, 15.2, 10.8, 6.8
3, 0.7, 0.1, 0.1
x(57) =
0, 0.13587, 0.4076, 0.67934, 0.95107
1.22281, 1.49455, 1.76628, 2.03802, 2.30975
2.58149, 2.85322, 3.12496, 3.26083
qf(57)=
5, 5.6, 6.8, 8.9, 10.9
12.1, 12.6, 12.4, 11.7, 10.2
8.1, 6, 4.9, 4.35
x(71) =
0, 0.13587, 0.4076, 0.67934, 0.95107
1.22281, 1.49455, 1.76628, 2.03802, 2.30975
2.58149, 2.85322, 3.12496, 3.26083
qf(71)=
7.4, 8.2, 9.8, 12.9, 15.9
17.7, 18.4, 18.1, 17, 14.9
11.7, 8.7, 7.2, 6.45
x(85)=
0, 0.13587, 0.4076, 0.67934, 0.95107
1.22281, 1.49455, 1.76628, 2.03802, 2.30975
2.58149, 2.85322, 3.12496, 3.26083
qf(85)=
7.05, 7.8, 9.3, 12.1, 14.3
15.5, 15.9, 15.6, 14.9, 13.4
10.9, 8.3, 6.9, 6.2
x(99)=
0, 0.13587, 0.4076, 0.67934, 0.95107
1.22281, 1.49455, 1.76628, 2.03802, 2.30975
2.58149, 2.85322, 3.12496, 3.26083
qf(99)=
3.45, 5.8, 10.5, 15.6, 21
23, 20.3, 15.2, 10.8, 6.8
3, 0.7, 0.1, 0.1
x(113) =
0, 0.13587, 0.4076, 0.67934, 0.95107
1.22281, 1.49455,1.76628, 2.03802, 2.30975
```

```
2.58149, 2.85322, 3.12496, 3.26083
qf(113)=
10.5, 11.6, 13.8, 17.3, 20
21.4, 21.9, 21.5, 20.5, 18.7
15.6, 12.3, 10.2, 9.15
x(127) =
0, 0.13587, 0.4076, 0.67934, 0.95107
1.22281, 1.49455, 1.76628, 2.03802, 2.30975
2.58149, 2.85322, 3.12496, 3.26083
qf(127)=
9.45, 10.4, 12.3, 15.4, 18
19.6, 20.2, 19.9, 18.8, 16.9
13.9, 10.9, 9.1, 8.2
x(141) =
0, 0.13587, 0.4076, 0.67934, 0.95107
1.22281, 1.49455, 1.76628, 2.03802, 2.30975
2.58149, 2.85322, 3.12496, 3.26083
qf(141)=
9, 9.9, 11.7, 14.7, 17.4
19.1, 19.9, 19.7, 18.7, 16.8
13.9, 11, 9.2, 8.3
jn=14,14,14,14,14,14,14,14,14,14,14
jst=
1, 1, 1, 1, 1
1, 1, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 3, 3, 3
3, 3, 3, 3, 3
3, 3, 3, 3, 3
3, 4, 4, 4, 4
4, 5, 5, 5, 5
5, 5, 5, 5, 5
5, 5, 5, 5, 5
5, 5, 6, 6, 6
6, 6, 6, 6, 6
6, 6, 6, 6, 7
7, 7, 7, 7, 7
7, 7, 7, 7, 7
7, 8, 8, 8, 8
8, 9, 9, 9, 9
9, 9, 9, 9, 9
9, 9, 9, 10, 10
10, 10, 10, 10, 10
10, 11, 11, 11, 11
11, 11, 11, 11, 11
    1 1
$end
```


GAIN Rod 702


```
* Output : *
* STANDARD PRINTER OUTPUT
        Scratch:
    5 ~ S C R A T C H ~ I N P U T ~ F I L E ~ F R O M ~ E C H O 1
* Input: FRAPCON-3 INPUT FILE (UNIT 55)
*
*
*****************************************************************************
* GOESINS:
FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
        CARRIAGE CONTROL='NONE'
*
* GOESOUTS:
FILE06='GAIN-702.out',
        STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='GAIN-702.plot',
    STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'
/****************************************************************************
GAIN Gd doped rod with 7% gadolinia
    $frpcn
    im=99, nr=17, ngasr=45, na=9
    $end
    $frpcon
    dco=0.3799, thkcld=0.02423, thkgap=0.00366, totl=3.25787, cpl=2.6417
    dspg=0.3241, dspgw=0.0394, vs=10
    hplt=0.4252, rc=0, hdish=0.0083, dishsd=0.0636
    enrch=3.483, imox=0, comp=0, ifba=0, b10=0, zrb2thick=0, zrb2den=90
    fotmtl=2, gadoln=0.07, ppmh2o=0, ppmn2=0
    den=91.79, deng=0, roughf=0.0000433, rsntr=90, tsint=2911
    icm=4, cldwks=0.5, roughc=0.0000197, catexf=0.05, chorg=10
    fgpav=377.1, idxgas=1, nunits=1, zr2vintage=1
    iplant=-2, pitch=0.4921, icor=0, crdt=0, crdtr=0, flux=10*221000000000000000
    crephr=10, sgapf=31, slim=0.05, qend=0.3, ngasmod=2
    jdlpr=1, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
    ProblemTime=
    0.04, 19.12, 19.16, 64.18, 64.22
    109.62, 109.66, 149.12, 149.16, 191.82
    191.86, 213.23, 213.27, 260.55, 260.6
    286.93, 286.97, 312.69, 312.73, 342.78
    342.83, 371.43, 371.47, 408.56, 408.6
    417.24, 417.28, 425.52, 425.56, 441.42
    441.46, 441.5, 474.48, 474.52, 497.32
    497.36, 508.77, 508.82, 514.59, 514.63
    525.15, 525.19, 553.84, 553.89, 569.17
    569.22, 584.42, 584.47, 595.26, 595.3
    632.29, 632.33, 658.12, 658.16, 678.69
    678.74, 694.4, 694.44, 724.84, 724.88
    752.66, 752.7, 783.54, 783.58, 813.45
    813.49, 836.98, 837.02, 854.72, 854.76
    854.8, 861.88, 861.93, 897.63, 897.68
    924.68, 924.72, 927.2, 927.24, 951.32
    951.36, 965.32, 965.37, 995.57, 995.61
    1013.64, 1013.68, 1053.1, 1053.14, 1078.89
```

```
    1078.93, 1099.2, 1099.24, 1128.83, 1128.87
    1162, 1162.04, 1188.07, 1188.11
    qmpy=
    1.151, 1.151, 1.402, 1.402, 1.715
    1.715, 2.195, 2.195, 2.695, 2.695
    3.122, 3.122, 3.706, 3.706, 4.211
    4.211, 4.509, 4.509, 5.174, 5.174
    5.179, 5.179, 5.657, 5.657, 5.118
    5.118, 4.483, 4.483, 3.724, 3.724
    0, 4.112, 4.112, 4.359, 4.359
    2.84, 2.84, 4.369, 4.369, 3.388
    3.388, 4.303, 4.303, 3.741, 3.741
    4.293,4.293, 4.077, 4.077, 4.115
    4.115, 3.876, 3.876, 3.848, 3.848
    3.434, 3.434, 3.688, 3.688, 3.721
    3.721, 3.719, 3.719, 3.706, 3.706
    3.696, 3.696, 3.442, 3.442, 0
    4.727, 4.727, 5.25, 5.25, 5.202
    5.202, 3.835, 3.835, 5.159, 5.159
    4.572, 4.572, 4.724, 4.724, 4.961
    4.961, 4.808, 4.808, 4.78, 4.78
    4.768, 4.768, 4.755, 4.755, 4.724
    4.724,4.686,4.686,0
    nsp=0
    p2= 2199, tw= 491, go= 2100000
    iq=0, fa=1
    x(1)=
    0, 0.08202, 0.24606, 0.49213, 0.82021
    1.14829, 1.47638, 1.80446, 2.13255, 2.46063
    2.78871, 3.03478, 3.19882, 3.25787
    qf(1)=
    0.450331125827815, 0.529801324503311, 0.688741721854305, 0.95364238410596,
1.21854304635762
    1.37748344370861, 1.43046357615894, 1.40397350993377, 1.32450331125828,
1.13907284768212
    0.847682119205298, 0.609271523178808, 0.47682119205298, 0.429139072847682
    x(15)=
    0, 0.08202, 0.24606, 0.49213, 0.82021
    1.14829, 1.47638, 1.80446, 2.13255, 2.46063
    2.78871, 3.03478, 3.19882, 3.25787
    qf(15)=
    0.402173913043478, 0.478260869565217, 0.630434782608696, 0.91304347826087,
    1.21739130434783
    1.43478260869565, 1.52173913043478, 1.5, 1.3695652173913, 1.1304347826087
    0.826086956521739, 0.565217391304348, 0.41304347826087, 0.358260869565217
    x(29)=
    0, 0.08202, 0.24606, 0.49213, 0.82021
    1.14829, 1.47638, 1.80446, 2.13255, 2.46063
    2.78871, 3.03478, 3.19882, 3.25787
    qf(29)=
    0.254476908576814, 0.32799245994345,0.47502356267672, 0.814326107445806,
    1.25541941564562
    1.57210179076343, 1.73044297832234, 1.70782280867106, 1.50424128180961,
    1.17624882186616
    0.735155513666352,0.418473138548539,0.282752120640905,0.233892554194156
    x(43)=
    0,0.08202, 0.24606, 0.49213, 0.82021
```

```
    1.14829, 1.47638, 1.80446, 2.13255, 2.46063
    2.78871, 3.03478, 3.19882, 3.25787
    qf(43)=
    0.338733431516937, 0.430044182621502, 0.612665684830633, 0.972017673048601,
1.28424153166421
    1.38438880706922, 1.4079528718704, 1.39617083946981, 1.36082474226804,
1.24300441826215
    0.924889543446244,0.577319587628866,0.406480117820324,0.344977908689249
    x(57)=
    0, 0.08202, 0.24606, 0.49213, 0.82021
    1.14829, 1.47638, 1.80446, 2.13255, 2.46063
    2.78871, 3.03478, 3.19882, 3.25787
    qf(57)=
    0.443672456575682, 0.535980148883375, 0.720595533498759, 1.04218362282878,
1.22679900744417
    1.2863523573201, 1.29826302729529, 1.2863523573201, 1.25657568238213,
1.18511166253102
    0.988585607940447,0.678908188585608, 0.494292803970223, 0.427831265508685
    x(71)=
    0, 0.08202, 0.24606, 0.49213, 0.82021
    1.14829, 1.47638, 1.80446, 2.13255, 2.46063
    2.78871, 3.03478, 3.19882, 3.25787
    qf(71)=
    0.555898702903026,0.615194564546016, 0.733786287831995,0.970969734403953,
1.18591723285979
    1.31933292155652, 1.37862878319951, 1.35639283508338, 1.2674490426189,
1.11179740580605
    0.874613959234095,0.652254478072884, 0.533662754786905,0.490969734403953
    x(85)=
    0, 0.08202, 0.24606, 0.49213, 0.82021
    1.14829, 1.47638, 1.80446, 2.13255, 2.46063
    2.78871, 3.03478, 3.19882, 3.25787
    qf(85)=
    0.555944055944056, 0.615384615384616, 0.734265734265734, 0.972027972027972,
    1.18881118881119
    1.32167832167832, 1.37062937062937, 1.35664335664336, 1.26573426573427,
    1.11188811188811
    0.874125874125874, 0.65034965034965, 0.538461538461539, 0.498181818181818
    x(99)=
    0,0.08202, 0.24606, 0.49213, 0.82021
    1.14829, 1.47638, 1.80446, 2.13255, 2.46063
    2.78871, 3.03478, 3.19882, 3.25787
    qf(99)=
    0.577474402730375, 0.638907849829351, 0.761774744027304, 0.991126279863481,
    1.1877133105802
    1.29419795221843, 1.33515358361775, 1.31058020477816, 1.24505119453925,
    1.11399317406143
        0.892832764505119,0.671672354948805,0.556996587030717,0.515713310580205
    x(113)=
    0, 0.08202, 0.24606, 0.49213, 0.82021
    1.14829, 1.47638, 1.80446, 2.13255, 2.46063
    2.78871, 3.03478, 3.19882, 3.25787
    qf(113)=
    0.606185567010309, 0.668041237113402, 0.791752577319588, 1.01443298969072,
    1.17938144329897
    1.26185567010309, 1.28659793814433, 1.27010309278351, 1.21237113402062,
    1.10515463917526
```

```
0.915463917525773, 0.701030927835051, 0.593814432989691, 0.555216494845361
jn=14,14,14,14,14,14,14,14,14
jst=
1, 1, 2, 2, 3
3, 3, 3, 3, 3
3, 3, 3, 3, 2
2, 4, 4, 4, 4
4, 4, 5, 5, 5
5, 5, 5, 5, 5
5, 6, 6, 7, 7
7, 7, 7, 7, 7
7, 7, 7, 7, 7
7, 7, 7, 7, 7
7, 7, 7, 7, 7
7, 7, 7, 7, 8
8, 8, 8, 8, 8
9, 9, 9, 9, 9
9, 9, 9, 9, 9
9, 9, 9, 9, 9
9, 9, 9, 9, 9
9, 9, 9, 9, 9
9, 9, 9, 9, 9
9, 9, 9, 9
$end
```


Power-Ramp Assessment Cases

A. 38 Ramped HBEP Obrigheim/Petten Rods

The HBEP was an international, group-sponsored program administrated by Battelle Pacific Northwest Laboratory from 1979 to 1989 (Barner et al. 1990). The objective was to investigate the impact of extended burnup on fuel rod performance, especially FGR. A total of 81 rods of both BWR and PWR types were irradiated and examined under the program, with rod-average burnups ranging up to $69 \mathrm{GWd} / \mathrm{MTU}$ and peak pellet burnups up to $83 \mathrm{GWd} / \mathrm{MTU}$.

Under Task 2 of the program, full-length segmented rods were irradiated in commercial power reactors and then subjected to power ramps in test reactors. The rod segments comprised "rodlets" that were individual short-length fuel rods, mated end-to-end to form the full-length rods. Following irradiation to a variety of burnup levels, the rods were disassembled into the individual rodlets, and the rodlets were ramp-tested in test reactors. The peak LHGRs in these ramps ranged from 35 to $50 \mathrm{~kW} / \mathrm{m}$, and hold times ranged from 48 to 196 hours. The FGR during bumping was a function of the peak LHGRs and ranged from 10 to 45 percent. The pre-bump LHGRs ranged from 15 to $35 \mathrm{~kW} / \mathrm{m}$, as confirmed by calibrated nondestructive ${ }^{85} \mathrm{Kr}$ activity determinations for the plenum gas, and the pre-bump FGRs were generally low (1 to 5 percent).

Two PWR-type ramped rodlets were chosen for comparison to FRAPCON-3.4 predictions. Both were fabricated by Kraftwerk Union (KWU), irradiated in the same fuel assembly in the Obrigheim PWR, Germany, and then power-ramped to approximately the same peak LHGR (41 to $43 \mathrm{~kW} / \mathrm{m}$) in the JRCPetten test reactor, the Netherlands. Rodlet D200 attained $25 \mathrm{GWd} / \mathrm{MTU}$ burnup in one reactor cycle at LHGRs of $25 \pm 2 \mathrm{~kW} / \mathrm{m}$. Rodlet D226 attained $45 \mathrm{GWd} / \mathrm{MTU}$ by further irradiation in the same assembly for two more cycles, with LHGR generally decreasing with time from $25 \mathrm{~kW} / \mathrm{m}$ at BOL to $\sim 17 \mathrm{~kW} / \mathrm{m}$ during the final cycle. The fuel in these rods resulted in high fuel densification >2.5 percent TD and high open porosity that is atypical of today's fuel. Comparisons of the FGR data from these power-ramped rods to other power-ramped data with lower densification and open porosity fuel typical of today's fuel suggests that these FGR data are higher than observed from today's fuel. As a result, the FRAPCON-3.4 code tended to underpredict this data, which is not surprising.

The post-bump FGR is greater for the higher-burnup rodlet D226 than for rodlet D200 (44 vs. 38 percent), despite D226 having a smaller as-fabricated fuel cladding gap. The pre-ramp FGRs, based on ${ }^{85} \mathrm{Kr}$ activity in the plenums, were very similar: 4.2 and 6.6 percent, respectively. Therefore, the net FGR during ramping is greater for rodlet D226, and this was attributed to burnup effects. This rodlet pair thus provides a test of the burnup effects inherent in the FRAPCON-3.4

The input files used for the UO_{2} FGR assessment are shown below.

Ramped Rodlet D200

```
* GOESINS:
FILE05='nullfile', STATUS='scratch', FORM='FORMATTED',
    CARRIAGE CONTROL='LIST'
*
* GOESOUTS:
FILE06='outd200.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
/**********************************************************************
```

HBEP Ramped Rodlet d200

```
$frpcn
im=29, na=5,nr=20
ngasr = 45,
$end
$frpcon
cpl = 0.974, crdt = 0.,dco = 0.4236,
thkcld = 0.02905, thkgap = 0.004, pitch = 0.56,
den = 94.3, dishsd = 0.02185, dspg = 0.36,
dspgw = 0.02, enrch = 3.20, fa= 1.0, fgpav = 304.6,
hplt = 0.3588, hdish = 0.0284, icm = 4,
icor = 0, idxgas = 1, iplant = -2, iq = 0, jdlpr = 0,
jn = 6,6, jst = 17*1,12*2, nsp = 1,
go(1) = 29*0.0, tw(1) = 17*580.,12*611., p2(1) = 29*2106.,
totl = 1.0417, rsntr = 150.,
rc = 0.0, roughc = 2.5e-5,
roughf = 4.5e-5, vs = 8.0,
nunits = 1,
flux = 6*0.18e17,
qf(1) = 1.,1.,0.99,0.98,0.97,0.96,
x(1) = 0.0, 0.20834, 0.41668, 0.62502, 0.83336, 1.0417,
qf(7) = 0.96,0.96,0.97,0.98,0.99,1,
x(7) = 0.0, 0.20834, 0.41668, 0.62502, 0.83336, 1.0417,
ProblemTime= 0.1,43.8, 73.7, 101.8, 132.0, 157.4, 188.3, 247.0,
293.9, 295.7, 318.0, 346.4, 376.8, 406.4, 460.5, 488.0,
548.1, 571.4, 571.41, 571.42, 571.43, 571.7, 572.1, 572.6,
573.0, 573.5, 574.0, 574.5, 575.0
qmpy = 7.89, 7.89, 8.05, 8.53, 8.26, 8.02, 7.80, 8.11,
7.50, 7.35, 8.05, 7.89, 7.65, 7.53, 7.38, 7.25,
7.13, 6.64, 0.30, 1.68, 5.12, 7.01, 7.80, 9.36,
5*13.8,
slim = .05,
$end
```


Ramped Rodlet D226

```
FILE05='nullfile', STATUS='scratch', FORM='FORMATTED',
                CARRIAGE CONTROL='LIST'
*
* GOESOUTS:
FILE06='outd226.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='plotd226.out', STATUS = 'UNKNOWN', FORM = 'FORMATTED'
/*********************************************************************************
    HBEP Ramped Rodlet d226
$frpcn
im=45, na=3, nr=20
ngasr = 45,
$end
$frpcon
cpl = 1.05, crdt = 0., pitch = 0.55,
dco = 0.4240, thkcld = 0.02925, thkgap = 0.00335,
den = 94.3, dishsd = 0.02185, dspg = 0.36,
dspgw = 0.02, enrch = 3.20, fa= 1.0, fgpav = 304.6,
hplt = 0.3588, hdish = 0.0284, icm = 4,
icor = 0, idxgas = 1, iplant = -2, iq = 0, jdlpr = 0,
jn = 6, jst = 45*1, nsp = 1,crephr=1.0,
```

```
go(1) = 45*0.0, tw(1) = 30*580., 15*611., p2(1) = 45*2106.,
totl = 1.0417, rsntr = 250.,
rc = 0.0, roughc = 2.5e-5,
roughf = 8.5e-5, vs = 8.0,
nunits = 1, nplot=1,
flux = 4*0.18e17,
qf(1) = 6*1.0
x(1) = 0.0, 0.20834, 0.41668, 0.62502, 0.83336, 1.0417,
ProblemTime=
0.1, 43.8, 73.7, 101.8, 132.0,
157.4, 188.3, 247.0, 293.9, 295.7,
318.0, 346.4, 376.8, 406.4, 460.5,
488.0, 548.1, 571.4, 621.1, 681.0,
711.9, 760.6, 790.9, 850.5, 872.0,
925.5, 985.7, 1044.0, 1100.8, 1161.0,
1185.8, 1185.9, 1186.0, 1186.2, 1186.7,
1187.2,
1187.8, 1188.05, 1188.3, 1188.55, 1188.8,
1189.05, 1189.3, 1189.55, 1189.8
qmpy =
7.28, 7.28, 7.92, 8.32, 8.05,
7.89, 7.71, 7.56, 7.41, 8.08,
7.86, 7.59, 7.38, 7.22, 7.07,
6.98, 6.92, 6.43, 7.04, 6.64,
6.49, 6.40, 6.25, 6.04, 4.36,
5.27, 5.27, 5.24, 5.27, 5.24,
4.27, 3.00, 3.54, 7.07, 7.92,
9.60,
9*13.10,
slim = .05,
$end
```


A. 39 Super-Ramp Rods

The Super-Ramp Project was an international, group-sponsored program involving base-irradiation of segmented full-length BWR and PWR rods in various power reactors, followed by ramp-testing of the rod segments in the Studsvik R-2 test reactor, Sweden (Djurle 1985). The project's purpose was to establish the failure threshold for rods of varying types and burnup, and some rod segments did fail during highpower ramp testing. Rod segments that did not fail, however, gave data on FGR and cladding permanent hoop strain during EOL power transients.

Three rod segments were selected as FGR assessment cases and nine rod segments were selected as cladding hoop strain assessment cases. These were all non-failed PWR rod segments, which had been base-irradiated in the Obrigheim PWR for three cycles up to a burnup of 34 to $37 \mathrm{GWd} / \mathrm{MTU}$. The segments were then ramp-tested in the Studsvik reactor to ramp terminal levels as high as $43 \mathrm{~kW} / \mathrm{m}$. The FGRs and residual cladding hoop strain were measured following the ramp test.

The segmented PWR rods were designed in basic conformance with KWU's 15×15 PWR fuel design. The general design specifications are given in Table A15.1. The fuel segment length was short, 39 cm overall and 31.5 cm active fuel length, to match well within the ~ 1 meter active length of the Studsvik reactor core. The diametral fuel-cladding gap was 145 microns (5.7 mils). The fuel pellet density is 95 percent TD, and the standard KWU densification test is only 2.2 hours at $1700^{\circ} \mathrm{C}$ rather than the 24 hour densification test at $1700^{\circ} \mathrm{C}$ required by the NRC as a measure of maximum densification. Therefore, the quoted maximum densification for this fuel "none" may be low, and it may be as great as 1 percent TD-the latter figure is used as FRAPCON-3.4 input.

The input files used for the UO_{2} FGR assessments and cladding hoop strain assessments are shown below.

PK1/1 Cladding Hoop Strain Case

```
* GOESINS:
FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
            CARRIAGE CONTROL='NONE'
*
* GOESOUTS:
FILE06='PK1-1.out',
            STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='PK1-1.plot',
                STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'
/******************************************************************************
Ramp Rod PK1-1
    $frpon
    im=40, nr=17, ngasr=45, na=9
    $end
    $frpcon
    dco=0.4237, thkcld=0.0286, thkgap=0.00394, totl=1.02067, cpl=1.2598
    dspg=0.3587, dspgw=0.0394, vs=10
    hplt=0.4484, rc=0, hdish=0.0098, dishsd=0.022
    enrch=3.2, imox=0, comp=0
    fotmtl=2, gadoln=0, ppmh2o=0, ppmn2=0
    den=94.5, deng=0, roughf=0.0000787, rsntr=41.44, tsint=2911
    icm=4, cldwks=0.5, roughc=0.0000197, catexf=0.05, chorg=10
    fgpav=326.34, idxgas=1
```

```
iplant=-2, pitch=0.5509, icor=0, crdt=0, crdtr=0, flux=10*221000000000000000
crephr=1, sgapf=31, slim=0.05, qend=0.3
jdlpr=0, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
ProblemTime=
0.063, 0.125, 0.25, 24.875, 54.542
84.458, 111.583, 134.792, 165.5, 193.833
223.208, 253.667, 277.75, 296.083, 328.167
356.75, 386.875, 419.792, 438.75, 469.833
499.708, 525.708, 533.417, 588.542, 616.417
645.458, 675.583, 707.333, 737.708, 763.917
793.75, 826.333, 831.708, 874.75, 876.25
876.75, 877.75, 878.251, 878.501, 886.38
qmpy=
0.792, 2.377, 4.755, 6.943, 8.272
8.211, 8.211, 8.178, 8.053, 7.797
7.797, 8.083, 7.925, 6.815, 6.943
6.846, 6.91, 6.864, 6.687, 6.642
6.642, 6.642, 6.608, 5.349, 6.815
6.91,6.895,6.785, 6.815, 6.767
6.815, 6.846, 6.578, 5.508, 0
3.417, 6.836, 11.345, 5.672, 5.445
nsp=1
p2=
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
tw=
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 541.4, 541.4, 541.4, 541.4
597.2, 597.2, 597.2, 597.2, 597.2
go=
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
0, 0, 0, 0, 0
iq=0, fa=1
x(1)=
0, 0.1706, 0.47244, 0.81365, 1.02067
qf(1)=
1, 1, 1, 1, 1
x(6)=
0,0.1706,0.47244, 0.81365, 1.02067
qf(6)=
```

```
34, 37.35, 41.5, 34.44, 29
jn=5,5
jst=
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
2, 2, 2, 2, 2
$end
```


PK1/3 Cladding Hoop Strain Case

```
* GOESINS:
FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
    CARRIAGE CONTROL='NONE'
*
* GOESOUTS:
FILE06='PK1-3.out',
                STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='PK1-3.plot',
                STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'
/*****************************************************************************
Super Ramp Rod PK1-3
    $frpcn
    im=39, nr=17, ngasr=45, na=9
    $end
    $frpcon
    dco=0.4237, thkcld=0.02862, thkgap=0.0039, totl=1.01706, cpl=1.2756
    dspg=0.3587, dspgw=0.0394, vs=10
    hplt=0.4484, rc=0, hdish=0.0098, dishsd=0.0236
    enrch=3.2, imox=0, comp=0
    fotmtl=2, gadoln=0, ppmh2o=0, ppmn2=0
    den=94.5255474452555, deng=0, roughf=0.0000787, rsntr=41.44, tsint=2911
    icm=4, cldwks=0.5, roughc=0.0000197, catexf=0.05, chorg=10
    fgpav=326.34, idxgas=1
    iplant=-2, pitch=0.5508, icor=0, crdt=0, crdtr=0, flux=10*22100000000000000
    crephr=1, sgapf=31, slim=0.05, qend=0.3
    jdlpr=0, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
    ProblemTime=
    0.063, 0.125, 0.25, 24.875, 54.542
    84.458, 111.625, 134.833, 165.542, 193.875
    223.292, 253.708, 277.792, 296.125, 328.208
    356.792, 386.917, 419.833, 438.792, 469.875
    499.792, 525.833, 533.583, 588.708, 616.583
    645.625, 675.75, 707.5, 737.875, 764.083
    793.917, 826.5, 831.875, 874.917, 876.417
    876.917, 877.917, 878.418, 878.668
    qmpy=
    0.792, 2.377, 4.755, 6.943, 8.495
    8.306, 8.178, 8.053, 7.989, 7.83
    7.736, 7.736, 7.227, 7.163, 7.212
    6.959, 6.974, 6.91, 6.895, 6.989
    6.879, 6.657, 6.578, 5.349, 6.974
    6.721, 6.593, 6.562, 6.434, 6.404
    6.34, 6.325, 6.419, 5.429, 0
```

```
3.417, 6.835, 12.985, 6.492
nsp=1
p2=
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
tw=
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 541.4, 541.4, 541.4, 541.4
597.2, 597.2, 597.2, 597.2, 597.2
go=
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
0, 0, 0, 0, 0
iq=0, fa=1
x(1)=
0, 0.1706, 0.47244, 0.81365, 1.01706
qf(1)=
1, 1, 1, 1, 1
x(6)=
0, 0.1706, 0.47244, 0.81365, 1.01706
qf(6)=
40, 42.74, 47.5, 39.43, 35
jn=5,5
jst=
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
2, 2, 2, 2
$end
```


PK2/1 Cladding Hoop Strain Case

```
* GOESINS:
FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
    CARRIAGE CONTROL='NONE'
*
* GOESOUTS:
FILE06='PK2-1.out',
```

```
            STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='PK2-1.plot',
            STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'
/*****************************************************************************Super
Ramp Rod PK2-1
    $frpcn
    im=50, nr=17, ngasr=45, na=9
    $end
    $frpcon
    dco=0.4233, thkcld=0.02894, thkgap=0.00285, totl=1.04134, cpl=1.2835
    dspg=0.3587, dspgw=0.0394, vs=10
    hplt=0.4461, rc=0, hdish=0.0098, dishsd=0.0236
    enrch=3.21, imox=0, comp=0
    fotmtl=2, gadoln=0, ppmh2o=0, ppmn2=0
    den=94.3430656934306, deng=0, roughf=0.0000787, rsntr=72.38, tsint=2911
    icm=4, cldwks=0.5, roughc=0.0000197, catexf=0.05, chorg=10
    fgpav=326.34, idxgas=1
    iplant=-2, pitch=0.5504, icor=0, crdt=0, crdtr=0, flux=10*221000000000000000
    crephr=1, sgapf=31, slim=0.05, qend=0.3
    jdlpr=0, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
    ProblemTime=
    0.063, 0.125, 0.25, 45.667, 74.792
    106.333, 132.417, 158.5, 187.708, 215
246.542, 278.083, 294.75, 319.375, 349
378.917, 406.083, 429.292, 460, 488.333
517.75, 548.208, 572.292, 590.625, 622.708
651.292, 681.417, 714.333, 733.292, 764.375
794.25, 820.25, 827.958, 883.083, 910.958
940, 970.125, 1001.875, 1032.25, 1058.458
1088.292, 1120.875, 1126.208, 1169.25, 1169.5
1170.75, 1171.25, 1172.25, 1172.751, 1173.001
qmpy=
0.796, 2.387, 3.978, 5.115, 6.858
6.953,6.904, 6.843, 6.764,6.651
6.587, 5.983, 5.983, 7.047, 8.114
8.068, 7.986, 7.925, 7.827, 7.605
7.638, 7.733, 7.891, 7.254, 7.303
7.129, 7.081, 6.937, 6.843, 6.62
6.62, 6.62, 6.62, 5.377, 6.127
6.206, 6.191, 6.093, 6.142, 6.078
6.127, 6.172, 6.172, 5.313, 2.228
0, 3.418, 6.835, 11.208, 5.605
nsp=1
p2=
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05
tw=
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 541.4, 541.4, 541.4, 541.4
```

```
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 541.4, 541.4, 541.4, 541.4
597.2, 597.2, 597.2, 597.2
go=
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
0, 0, 0, 0
iq=0, fa=1
x(1)=
0, 0.1706, 0.47244, 0.81365, 1.04134
qf(1)=
1, 1, 1, 1, 1
x(6) =
0, 0.1706, 0.47244, 0.81365, 1.04134
qf(6)=
34, 36.89, 41, 34.03, 29
jn=5,5
jst=
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 2, 2, 2, 2
$end
```


PK2/3 Cladding Hoop Strain Case

* GOESINS:

FILEO5='nullfile', STATUS='UNKNOWN', FORM='FORMATTED', CARRIAGE CONTROL='NONE'
\star

* GOESOUTS:

FILE06='PK2-3.out', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='PK2-3.plot', STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'

Ramp Rod PK2-3

```
    $frpon
```

 im=50, nr=17, ngasr=45, na=9
 \$end
 \$frpcon
dco=0.4233, thkcld=0.02892, thkgap=0.00285, totl=1.01378, cpl=1.2795
$\mathrm{dspg}=0.3587$, dspgw=0.0394, vs=10
hplt=0.4461, rc=0, hdish=0.0098, dishsd=0.0236
enrch=3.21, imox=0, comp=0
fotmtl=2, gadoln=0, ppmh2o=0, ppmn2=0
den $=94.3430656934306$, deng=0, roughf=0.0000787, rsntr=72.38, tsint=2911
icm=4, cldwks=0.5, roughc=0.0000197, catexf=0.05, chorg=10
fgpav=326.34, idxgas=1
iplant $=-2$, pitch=0.5503, icor=0, crdt=0, crdtr=0, flux=10*22100000000000000
crephr=1, sgapf=31, slim=0.05, qend=0.3
jdlpr=0, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
ProblemTime=
$0.063,0.125,0.25,45.667,74.792$
106.333, 132.417, 158.5, 187.708, 215
$246.542,278.083,294.75,319.375,349$
378.917, 406.083, 429.292, 460, 488.333
517.75, 548.208, 572.292, 590.625, 622.708
651.292, 681.417, 714.333, 733.292, 764.375
794.292, 820.333, 828.042, 883.167, 911.042
940.083, 970.208, 1001.958, 1032.333, 1058.542
1088.375, 1120.958, 1126.292, 1169.333, 1169.583
1170.833, 1171.333, 1172.333, 1172.835, 1173.085
qmpy=
$0.796,2.387,3.978,5.435,6.73$
$6.858,6.794,6.764,6.7,6.602$
6.538, 6.191, 6.166, 7.175, 8.211
8.068, 8.178, 7.669, 7.638, 7.541
7.477, 7.477, 6.986, 7.541, 7.51
7.129, 7.081, 6.937, 6.843, 6.873
6.764, 6.602, 6.532, 5.297, 6.221
6.047, 5.904, 5.791, 5.776, 5.697
$5.697,5.697,5.697,5.075,2.228$
$0,3.418,6.835,13.398,6.699$
$\mathrm{nsp}=1$
p2=
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
$2103.05,2103.05,2103.05,2103.05,2103.05$
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
$2103.05,2103.05,2103.05,2103.05,2103.05$
tw=
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 541.4, 541.4, 541.4, 541.4
$541.4,541.4,541.4,541.4,541.4$
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 597.2, 597.2, 597.2, 597.2

```
go=
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 0, 0, 0, 0
iq=0, fa=1
x(1)=
0, 0.1706, 0.47244, 0.81365, 1.01378
qf(1)=
1, 1, 1, 1, 1
x(6)=
0, 0.1706, 0.47244, 0.81365, 1.01378
qf(6)=
41, 44.11, 49.01, 40.67, 35.5
jn=5,5
jst=
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 2, 2, 2, 2
$end
```


PK2/S Cladding Hoop Strain Case

```
* GOESINS:
FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
    CARRIAGE CONTROL='NONE'
*
* GOESOUTS:
FILE06='PK2-S.out',
    STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='PK2-S.plot',
    STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'
/***************************************************************************
Ramp Rod PK2-S
    $frpon
    im=50, nr=17, ngasr=45, na=9
    $end
    $frpcon
    dco=0.4234, thkcld=0.02896, thkgap=0.00285, totl=1.04134, cpl=1.2913
    dspg=0.3587, dspgw=0.0394, vs=10
    hplt=0.4461, rc=0, hdish=0.0098, dishsd=0.0236
    enrch=3.21, imox=0, comp=0
    fotmtl=2, gadoln=0, ppmh2o=0, ppmn2=0
    den=94.3430656934306, deng=0, roughf=0.0000787, rsntr=72.38, tsint=2911
    icm=4, cldwks=0.5, roughc=0.0000197, catexf=0.05, chorg=10
```

```
fgpav=326.34, idxgas=1
iplant=-2, pitch=0.5504, icor=0, crdt=0, crdtr=0, flux=10*22100000000000000
crephr=0.1, sgapf=31, slim=0.05, qend=0.3
jdlpr=0, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
ProblemTime=
0.063, 0.125, 0.25, 45.667, 74.792
106.333, 132.417, 158.5, 187.708, 215
246.542, 278.083, 294.75, 319.375, 349
378.917, 406.083, 429.292, 460, 488.333
517.75, 548.208, 572.292, 590.625, 622.708
651.292, 681.417, 714.333, 733.292, 764.375
794.292, 820.333, 828.042, 883.167, 911.042
940.083, 970.208, 1001.958, 1032.333, 1058.542
1088.375, 1120.958, 1126.292, 1169.333, 1169.583
1170.833, 1171.333, 1172.333, 1172.835, 1173.085
qmpy=
0.796, 2.387, 3.978, 5.435, 6.73
6.858, 6.794, 6.764, 6.7, 6.602
6.538, 6.191, 6.166, 7.175, 8.211
8.068, 8.178, 7.669, 7.638, 7.541
7.477, 7.477, 6.986, 7.541, 7.51
7.129, 7.081, 6.937, 6.843, 6.873
6.764, 6.602, 6.532, 5.297, 6.221
6.047, 5.904, 5.791, 5.776, 5.697
5.697, 5.697, 5.697, 5.075, 2.228
0, 3.418, 6.835, 13.398, 6.699
nsp=1
p2=
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
tw=
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 507.2, 507.2, 507.2, 507.2
go=
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
```

```
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 0, 0, 0, 0
iq=0, fa=1
x(1)=
0, 0.1706, 0.47244, 0.81365, 1.04134
qf(1)=
1, 1, 1, 1, 1
x(6)=
0, 0.1706, 0.47244, 0.81365, 1.04134
qf(6)=
36, 39.6, 44, 36.52, 32
jn=5,5
jst=
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 2, 2, 2, 2
$end
```


PK4/1 Cladding Hoop Strain Case

```
* GOESINS:
FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
    CARRIAGE CONTROL='NONE'
*
* GOESOUTS:
FILE06='PK4-1.out',
    STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='PK4-1.plot',
                STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'
/***************************************************************************
Super Ramp Rod PK4-1
    $frpcn
    im=41, nr=17, ngasr=45, na=9
    $end
    $frpcon
    dco=0.4239, thkcld=0.02935, thkgap=0.00329, totl=1.03117, cpl=1.2756
    dspg=0.3587, dspgw=0.0394, vs=10
    hplt=0.4268, rc=0, hdish=0.0098, dishsd=0.0236
    enrch=3.19, imox=0, comp=0
    fotmtl=2, gadoln=0.0409, ppmh2o=0, ppmn2=0
    den=93.978, deng=0, roughf=0.0000787, rsntr=72.1, tsint=2911
    icm=4, cldwks=0.5, roughc=0.0000197, catexf=0.05, chorg=10
    fgpav=326.34, idxgas=1
    iplant=-2, pitch=0.5511, icor=0, crdt=0, crdtr=0, flux=10*22100000000000000
    crephr=1, sgapf=31, slim=0.05, qend=0.3
    jdlpr=0, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
    ProblemTime=
    8.25, 16.5, 43.8, 73.7, 101.8
    132, 157.4, 188.3, 216.2, 247
    275.9, 293.9, 295.7, 318, 346.4
```

```
376.8, 406.4, 429.917, 460.5, 488
518.583, 548.083, 571.417, 591.417, 621.083
651.083, 681, 711.917, 742.708, 770.583
800.917, 830.708, 860.5, 865.875, 871.25
876.625, 882, 883, 884, 884.501
885.501
qmpy=
1.659, 3.26, 2.946, 3.861, 5.005
5.548, 6.007, 6.379, 7.151, 7.007
7.036, 7.036, 6.979, 7.036, 7.178
7.151, 7.122, 7.064, 7.007, 6.864
6.893, 7.007, 7.122, 5.978, 6.063
5.978, 6.007, 5.95, 5.777, 5.692
5.663, 5.663, 5.577, 6.264, 5.749
5.52, 5.005, 0, 6.721, 10.468
    0
nsp=1
p2=
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05
tw=
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 541.4, 597.2, 597.2, 597.2
    597.2
go=
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 0, 0, 0
            0
iq=0, fa=1
x(1)=
0,0.17186, 0.51558, 0.85931, 1.03117
qf(1)=
1, 1, 1, 1, 1
x(6)=
0,0.17186, 0.51558, 0.85931, 1.03117
qf(6)=
32.25, 33.67, 36.6, 32.76, 31
jn=5,5
```

```
jst=
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 2, 2, 2
    2
$end
```


PK4/2 Cladding Hoop Strain Case

```
* GOESINS:
FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
                            CARRIAGE CONTROL='NONE'
*
* GOESOUTS:
FILE06='PK4-2.out',
    STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='PK4-2.plot',
    STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'
/**************************************************************************
Ramp Rod PK4-2
    $frpon
    im=41, nr=17, ngasr=45, na=9
    $end
    $frpcon
    dco=0.4239, thkcld=0.02933, thkgap=0.00333, totl=1.02822, cpl=1.2913
    dspg=0.3587, dspgw=0.0394, vs=10
    hplt=0.4268, rc=0, hdish=0.0098, dishsd=0.0236
    enrch=3.19, imox=0, comp=0
    fotmtl=2, gadoln=0.0409, ppmh2o=0, ppmn2=0
    den=93.9781, deng=0, roughf=0.0000787, rsntr=72.1, tsint=2911
    icm=4, cldwks=0.5, roughc=0.0000197, catexf=0.05, chorg=10
    fgpav=326.34, idxgas=1
    iplant=-2, pitch=0.5511, icor=0, crdt=0, crdtr=0, flux=10*221000000000000000
    crephr=1, sgapf=31, slim=0.05, qend=0.3
    jdlpr=0, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
    ProblemTime=
    8.25, 16.5, 43.8, 73.7, 101.8
    132, 157.4, 188.3, 216.2, 247
    275.9, 293.9, 295.7, 318, 346.4
    376.8, 406.4, 429.917, 460.5, 488
    518.583, 548.083, 571.417, 591.417, 621.083
    651.083, 681, 711.917, 742.708, 770.583
    800.917, 830.708, 860.5, 865.875, 871.25
    876.625, 882, 883, 883.979, 884.502
    885.502
    qmpy=
    1.63, 3.232, 2.946, 3.861, 5.033
    5.548, 5.978, 6.379, 7.122, 6.951
    6.979, 7.007, 7.493, 7.408, 7.379
    7.35, 7.178, 7.122, 7.064, 6.979
    6.893, 6.749, 6.321, 6.206, 6.149
    6.206, 6.12, 6.063, 5.863, 5.863
    5.663,5.491, 5.406, 6.12, 5.72
```

```
5.378, 4.863, 0, 6.721, 11.955
    0
nsp=1
p2=
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05
tw=
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 541.4, 597.2, 597.2, 597.2
    597.2
go=
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 0, 0, 0
            0
iq=0, fa=1
x(1)=
0, 0.17186, 0.51558, 0.85931, 1.02822
qf(1)=
1, 1, 1, 1, 1
x(6)=
0,0.17186, 0.51558, 0.85931, 1.02822
qf(6)=
36.75, 38.46, 41.8, 37.41, 35.4
jn=5,5
jst=
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 2, 2, 2
    2
$end
```

PK6/1 Cladding Hoop Strain Case

* GOESINS:

```
FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
    CARRIAGE CONTROL='NONE'
*
* GOESOUTS:
FILE06='PK6-1.out',
        STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='PK6-1.plot',
                STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'
/***************************************************************************
Super Ramp Rod PK6-1
    $frpcn
    im=40, nr=17, ngasr=45, na=9
    $end
    $frpcon
    dco=0.423, thkcld=0.02852, thkgap=0.00285, totl=1.03379, cpl=1.3031
    dspg=0.36, dspgw=0.0394, vs=10
    hplt=0.437, rc=0, hdish=0.0228, dishsd=0.0512
    enrch=2.99, imox=0, comp=0
    fotmtl=2, gadoln=0, ppmh2o=0, ppmn2=0
    den=95.0729927007299, deng=0, roughf=0.0000787, rsntr=0, tsint=2911
    icm=4, cldwks=0.5, roughc=0.0000197, catexf=0.05, chorg=10
    fgpav=326.34, idxgas=1
    iplant=-2, pitch=0.5499, icor=0, crdt=0, crdtr=0, flux=10*221000000000000000
    crephr=1, sgapf=31, slim=0.05, qend=0.3
    jdlpr=0, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
    ProblemTime=
    0.063, 0.125, 0.25, 26.25, 54.292
    84.333, 112.875, 142.917, 167.458, 198.5
    226.542, 257.583, 287.625, 310.167, 334.208
    363.25, 394.292, 424.333, 448.375, 479.417
    538.458, 568.5, 593.042, 614.083, 644.125
    674.167, 704.208, 735.25, 766.292, 794.333
    825.375, 855.417, 886.458, 916.5, 917.504
    917.754, 918.754, 918.756, 918.794, 919.044
    qmpy=
    0.868, 2.601, 5.201, 6.934, 6.876
    7.539, 7.882, 7.623, 7.336, 7.134
    7.106, 7.019, 6.934, 6.846, 6.905
    7.077, 7.019, 6.99, 6.934, 6.849
    6.731,6.818, 6.934, 6.358,6.388
    6.243, 6.214, 6.1, 5.897, 5.812
    5.782, 5.753, 5.667, 5.725, 0
    3.532, 7.068, 9.894, 12.72, 6.36
    nsp=1
    p2=
    2103.05, 2103.05, 2103.05, 2103.05, 2103.05
    2103.05, 2103.05, 2103.05, 2103.05, 2103.05
    2103.05, 2103.05, 2103.05, 2103.05, 2103.05
    2103.05, 2103.05, 2103.05, 2103.05, 2103.05
    2103.05, 2103.05, 2103.05, 2103.05, 2103.05
    2103.05, 2103.05, 2103.05, 2103.05, 2103.05
    2103.05, 2103.05, 2103.05, 2103.05, 2103.05
    2103.05, 2103.05, 2103.05, 2103.05, 2103.05
    tw=
    541.4, 541.4, 541.4, 541.4, 541.4
    541.4, 541.4, 541.4, 541.4, 541.4
    541.4, 541.4, 541.4, 541.4, 541.4
```

```
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 541.4, 541.4, 541.4, 541.4
597.2, 597.2, 597.2, 597.2, 597.2
go=
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
0, 0, 0, 0, 0
iq=0, fa=1
x(1)=
0, 0.14764, 0.42651, 0.7956, 1.03379
qf(1)=
1, 1, 1, 1, 1
x(6)=
0, 0.14764, 0.42651, 0.7956, 1.03379
qf(6)=
39, 41.05, 44.98, 40.36, 37.5
jn=5,5
jst=
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
2, 2, 2, 2, 2
$end
```


PK6/2 Cladding Hoop Strain Case

* GOESINS:

```
FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
```

 CARRIAGE CONTROL='NONE'
 *
* GOESOUTS:
FILE06='PK6-2. out',
STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE 66='PK6-2.plot',
STATUS = 'UNKNOWN', FORM='FORMATTED', CARRIAGE CONTROL='LIST'
$/ \star * \operatorname{Super}$
Ramp Rod PK6-2
\$frpcn
im $=40$, nr=17, ngasr=45, na=9
\$end
\$frpcon
$\mathrm{dco}=0.423$, thkcld=0.0286, thkgap=0.00287, totl=1.0351, cpl=1.2795
$d s p g=0.3601, d s p g w=0.0394, \quad v s=10$
hplt=0.4358, rc=0, hdish=0.0228, dishsd=0.0512
enrch=2.99, imox=0, comp=0
fotmtl=2, gadoln=0, ppmh2o=0, ppmn2=0
den=95.073, deng=0, roughf=0.0000787, rsntr=0, tsint=2911

```
icm=4, cldwks=0.5, roughc=0.0000197, catexf=0.05, chorg=10
fgpav=326.34, idxgas=1
iplant=-2, pitch=0.5499, icor=0, crdt=0, crdtr=0, flux=10*22100000000000000
crephr=1, sgapf=31, slim=0.05, qend=0.3
jdlpr=0, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
ProblemTime=
0.063,0.125, 0.25, 0.292, 45.708
74.833, 106.375, 132.458, 158.542, 187.75
215.042, 246.583, 278.125, 294.833, 319.5
349.167, 379.083, 406.25, 429.458, 460.167
488.5, 517.917, 548.375, 572.458, 590.792
622.875, 651.458, 681.583, 714.5, 733.458
764.542, 794.458, 820.5, 828.208, 883.333
884.338, 884.629, 885.629, 886.13, 886.38
qmpy=
0.792, 2.371, 3.953, 5.535, 6.962
8.352, 8.669, 8.4, 8.083, 7.83
7.8, 7.705, 7.245, 7.196, 7.989
7.958, 7.815, 7.721, 7.608, 7.529
7.419, 7.294, 7.294, 6.818, 7.276
7.181, 7.166, 7.007, 6.864, 6.803
6.581, 6.358, 6.184, 6.178, 5.142
0, 3.471, 6.941, 10.892, 5.445
nsp=1
p2=
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
2103.05, 2103.05, 2103.05, 2103.05, 2103.05
tw=
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 541.4, 541.4, 541.4, 541.4
541.4, 541.4, 541.4, 541.4, 541.4
597.2, 597.2, 597.2, 597.2, 597.2
go=
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
2100000, 2100000, 2100000, 2100000, 2100000
0, 0, 0, 0, 0
iq=0, fa=1
x(1)=
0, 0.14764, 0.42651, 0.7956, 1.0351
qf(1)=
1, 1, 1, 1, 1
x(6)=
```

```
0, 0.14764, 0.42651, 0.7956, 1.0351
qf(6)=
33.5, 36.01, 40, 33.21, 29
jn=5,5
jst=
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
2, 2, 2, 2, 2
$end
```


PK6/2 FGR Case

* GOESINS:

FILE05='nullfile', STATUS='scratch', FORM='FORMATTED', CARRIAGE CONTROL='LIST'
\star

* GOESOUTS:

FILE06='outpk6-2.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'

```
/***********************************************************************
        Super Ramp Rod pk6-2
    $frpon
    im=34, na=8,
    ngasr = 45,
    $end
    $frpcon
    cpl = 1.28, crdt = 1., crdtr = 0.0,
    dco = 0.4230,pitch = 0.56,
    thkgap = 0.00285, thkcld = 0.0286,
    den = 95., dishsd = 0.0732, dspg = 0.35,
    dspgw = 0.03, enrch = 2.98, fa= 1.0, fgpav = 326,
    hplt = 0.437, hdish = 0.0228, icm = 4,
    icor = 0, idxgas = 1, iplant =-2, iq = 0, jdlpr = 1,
    jn = 9,9, jst = 19*1, 15*2, nsp = 0,
    go(1) = 0.0, tw(1) = 580., p2(1) = 2106.,
    totl = 1.022,
    rc = 0.0, roughc = 3.e-5,
    roughf = 8.e-5, vs = 8.0,
    nunits = 1, rsntr = 100.,
    flux = 9*0.18e17,
    qf(1) = 9*1.0
    x(1) = 0.0,0.1277,0.2556,0.3831,0.5108,0.6385,0.7663,
    0.8940, 1.022,
    qf(10) = 0.89,0.999,1.065,1.092,1.092,1.038,0.92,0.901,0.792,
    x(10) = 0.0,0.1277,0.2556,0.3831,0.5108,0.6385,0.7663,
    0.8940, 1.022,
    ProblemTime=0.1, 50., 100., 150., 200.,
    250., 300., 350., 400., 450.,
    500., 550., 600., 650., 700.,
    750., 800., 850., 900., 901.,
    901.2, 901.4, 901.6, 901.8, 901.9,
    902.1,902.15,902.2,902.25, 902.3, 902.35,902.4,902.45, 902.5
    qmpy =7.2, 7.2, 8.2, 8.2, 7.9,
    7.3, 6.9, 6.9, 7.8, 7.3,
```

```
7.0, 6.9, 6.7, 6.9, 6.5,
6.3, 6.1, 5.3, 4.6, 6.96,
8.0, 9.0, 10., 11.0, 12.0,
9*12.2
slim = .05,
$end
```


PK6/3 FGR Case

* GOESINS:

```
FILE05='nullfile', STATUS='scratch', FORM='FORMATTED',
```

 CARRIAGE CONTROL='LIST'
 *
* GOESOUTS:
FILE06='outpk6-3.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'

Super Ramp Rod pk6-3
\$frpen
im=32, na=8,
ngasr $=45$,
\$end
\$frpcon
cpl $=1.28$, crdt $=1 ., \quad$ crdtr $=0.0$,
dco $=0.4230$, pitch $=0.56$,
thkgap $=0.00285$, thkcld $=0.0286$
den $=$ 95., dishsd $=0.0732$, $\mathrm{dspg}=0.35$,
dspgw $=0.03$, enrch $=2.98$, fa= 1.0, fgpav $=326$,
hplt $=0.437$, hdish $=0.0228$, icm $=4$,
icor $=0, i d x g a s=1, i p l a n t=-2, i q=0, j d l p r=1$,
$j n=9,9, j s t=19 * 1,13 * 2, n s p=0$,
$\mathrm{go}(1)=0.0, \mathrm{tw}(1)=580 ., \mathrm{p} 2(1)=2106 .$,
totl $=1.022$,
rc $=0.0$, roughc $=3 . e-5$,
roughf $=8 . e-5$, vs $=8.0$,
nunits $=1$, rsntr $=100$. ,
flux $=9 * 0.18 e 17$,
$q f(1)=9 * 1.0$,
$x(1)=0.0,0.1277,0.2556,0.3831,0.5108,0.6385,0.7663,0.8940,1.022$,
$q f(10)=0.89,0.999,1.065,1.092,1.092,1.038,0.92,0.901,0.792$,
$x(10)=0.0,0.1277,0.2556,0.3831,0.5108,0.6385,0.7663,0.8940,1.022$,
ProblemTime=0.1, 50., 100., 150., 200.,
250., 300., 350., 400., 450.,
500., 550., 600., 650., 700.,
750., 800., 850., 900., 901.,901.03,901.06,901.09,
901.1,901.15,901.2,901.25, 901.3, 901.35,901.4,901.45, 901.5,
qmpy $=7.2,7.2,8.2,8.2,7.9$,
$7.3,6.9,6.9,7.8,7.3$,
7.0, 6.9, 6.7, 6.9, 6.5,
$6.3,6.1,5.3,4.6,6.96,9.0,11.0,12.5$,
9*13.19,
slim $=.05$,
\$end

PK6/S FGR Case

* GOESINS:

```
FILE05='nullfile', STATUS='scratch', FORM='FORMATTED',
```

 CARRIAGE CONTROL='LIST'
    ```
*
* GOESOUTS:
FILE06='outpk6-S.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
/************************************************************************
    Super Ramp Rod pk6-S
    $frpcn
    im=34, na=8,
    ngasr = 45,
    $end
    $frpcon
    cpl = 1.28, crdt = 1., crdtr = 0.0,
    dco = 0.4230,pitch = 0.56,
    thkgap = 0.00285, thkcld = 0.0286,
    den = 95., dishsd = 0.0732, dspg = 0.35,
    dspgw = 0.03, enrch = 2.98, fa= 1.0 fgpav = 326,
    hplt = 0.437, hdish = 0.0228, icm = 4,
    icor = 0, idxgas = 1, iplant =-2, iq = 0, jdlpr = 1,
    jn = 9,9, jst = 19*1, 15*2, nsp = 0,
    go(1) = 0.0, tw(1) = 580., p2(1)=2106.,
    totl = 1.022,
    rc = 0.0 roughc = 3.e-5,
    roughf = 8.e-5, vs = 8.0,
    nunits = 1, rsntr = 100.,
    flux = 9*0.18e17,
    qf(1) = 9*1.0
    x(1) = 0.0,0.1277,0.2556,0.3831,0.5108,0.6385,0.7663,
    0.8940, 1.022,
    qf(10) = 0.89,0.999,1.065,1.092,1.092,1.038,0.92,0.901,0.792,
    x(10) = 0.0,0.1277,0.2556,0.3831,0.5108,0.6385,0.7663,
    0.8940, 1.022,
    ProblemTime=0.1,50., 100., 150., 200.,
    250., 300., 350., 400., 450.,
    500., 550., 600., 650., 700.,
    750., 800., 850., 900., 901.,
    901.2, 901.4, 901.6, 901.8, 901.9,
    902.1,902.15,902.2,902.25, 902.3, 902.35,902.4,902.45,
    902.5,
    qmpy = 7.2, 7.2, 8.2, 8.2, 7.9,
    7.3, 6.9, 6.9, 7.8, 7.3,
    7.0,6.9,6.7, 6.9, 6.5,
    6.3,6.1, 5.3, 4.6,6.96,
    8.0, 9.0, 10., 11.0, 12.0,
    9*12.5,
    slim = .05,
    $end
```


A. 40 Inter-Ramp Rods

The Studsvik Inter-Ramp Project objective was to investigate the mechanical failure threshold for BWR 8×8 type fuel rods. Short rodlets with standard BWR 8×8 dimensions and components were fabricated by $\mathrm{ABB} /$ Atom specifically for the project and were base-irradiated to $\sim 20 \mathrm{GWd} / \mathrm{MTU}$ at low LHGRs before EOL ramping at rapid rate to high LHGRs to probe for cladding failure. Hold times at the ramp terminal (LHGR) level were 24 hours for non-failed rods. For the non-failed rods, post-ramp FGR was determined by rod puncture.

Two of the non-failed, ramp-tested Inter-Ramp rods, numbers 16 and 18 (Mogard et al. 1979; Lysell and Birath 1979), were selected for FGR and cladding permanent hoop strain assessment.

Twenty short 21 -inch rodlets were fabricated for the test, with nominal 8×8 BWR fuel rod characteristics, and there were some departures from these characteristics. Rods 16 and 18 were both "nominal rods" with 6-mil diametral gaps, 1 atm helium fill, and 95 percent TD solid, dished fuel pellets. The rods were irradiated in approximate BWR coolant conditions in pressurized loops within the Studsvik reactor. Rods 16 and 18 operated for ~ 550 days at LHGRs ranging from 20 to $40 \mathrm{~kW} / \mathrm{m}$ and achieved burnups of 21 and $18 \mathrm{GWd} / \mathrm{MTU}$, respectively.

Rods 16 and 18 were then preconditioned for 24 hours at 29 and $25 \mathrm{~kW} / \mathrm{m}$, respectively, and then ramped at a rate of $\sim 70 \mathrm{~W} / \mathrm{m}$ per second to terminal levels (maximum peak LHGR values) of 48 and $41 \mathrm{~kW} / \mathrm{m}$, respectively, where they were each held for 24 hours, during which the coolant was monitored for added radioactivity (indicating rod failure). Neither rod failed. Therefore, puncture and FGR determinations were feasible, and were performed.

The input files used for the UO_{2} FGR assessments and cladding hoop strain assessments are shown below.

```
Inter-Ramp Rod 16 Cladding Hoop Strain Case
* GOESINS:
FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
                CARRIAGE CONTROL='NONE'
*
* GOESOUTS:
FILE06='IRRMP-16.out',
            STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='IRRMP-16.plot',
            STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'
/*************************************************************************
Inter-Ramp Rod 16
    $frpon
    im=54, nr=17, ngasr=45, na=9
    $end
    $frpcon
    dco=0.4935, thkcld=0.03514, thkgap=0.00217, totl=1.31529, cpl=1.6535
    dspg=0.4189, dspgw=0.0394, vs=10
    hplt=0.5118, rc=0, hdish=0.0102, dishsd=0.048
    enrch=3.5, imox=0, comp=0
    fotmtl=2, gadoln=0, ppmh2o=0, ppmn2=0
    den=94.4, deng=0, roughf=0.0000787, rsntr=120, tsint=2911
    icm=2, cldwks=0, roughc=0.0000315, catexf=0.05, chorg=10
```

```
fgpav=14.7, idxgas=1
```

iplant=-3, pitch=0.5413, icor=0, crdt=0, crdtr=0, flux=10*22100000000000000
crephr=1, sgapf=31, slim=0.05, qend=0.3
jdlpr=0, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
ProblemTime=
18.271, 34.204, 52.521, 62.996, 69.804
73.088, 85.813, 98.604, 102.604, 118.3
137.971, 150.704, 154.625, 172.321, 187.754
203.971, 205.6, 216.492, 224.879, 241.929
243.592, 253.108, 270.908, 276.471, 286.467
302.171, 319.908, 332.604, 337.217, 343.496
$347.538,362.746,375.508,378.433,384.683$
397.046, 413.175, 430.808, 443.158, 456.992
467.013, 468.375, 472.517, 488.017, 494.642
508.163, 522.092, 539.775, 540.775, 541.275
541.779, 542.28, 542.783, 543.033
qmpy=
5.859, 11.223, 10.788, 10.846, 10.967
9.075, 7.068, 7.241, 7.446, 7.378
$7.475,9.139,10.443,10.385,10.705$
$10.747,9.172,7.74,7.734,7.65$
$7.585,7.851,7.832,9.082,10.872$
$11.093,10.736,10.36,9.088,7.783$
$7.814,7.814,7.873,7.74,7.686$
$7.869,9.216,10.059,9.936,10.211$
$10.115,10.209,10.308,9.263,8.288$
$8.025,7.76,7.76,0,8.074$
$8.074,13.335,13.335,6.667$
$\mathrm{nsp}=0$
$\mathrm{p} 2=1035.57$, $\mathrm{tw}=554, \mathrm{go}=0$
iq=0, fa=1
$x(1)=$
$0,0.1644,0.49321,0.82201,1.15082$
1.31529
qf(1) =
22, 27.06, 32.82, 32.82, 26.39
22
jn=6
jst=
$1,1,1,1,1$
$1,1,1,1,1$
$1,1,1,1,1$
$1,1,1,1,1$
$1,1,1,1,1$
$1,1,1,1,1$
$1,1,1,1,1$
$1,1,1,1,1$
$1,1,1,1,1$
$1,1,1,1,1$
$1,1,1,1$
\$end

Inter-Ramp Rod 18 Cladding Hoop Strain Case

* GOESINS:

FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
\star

* GOESOUTS:
FILE06='IRRMP-18.out',
STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='IRRMP-18.plot',
STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'

Inter-Ramp Rod 18
\$frpen
im=54, nr=17, ngasr=45, na=9
\$end
\$frpcon
dco=0.4934, thkcld=0.03411, thkgap=0.00311, totl=1.30906, cpl=1.7323
dspg=0.419, dspgw=0.0394, vs=10
hplt=0.5118, rc=0, hdish=0.0102, dishsd=0.0481
enrch=3.5, imox=0, comp=0
fotmtl=2, gadoln=0, ppmh $20=0, \mathrm{ppmn} 2=0$
den $=94.3$, deng=0, roughf=0.0000787, rsntr=120, tsint=2911
icm=2, cldwks=0.5, roughc=0.0000315, catexf=0.05, chorg=10
fgpav=14.7, idxgas=1
iplant $=-3$, pitch=0.5413, icor=0, crdt=0, crdtr=0, flux=10*22100000000000000
crephr=1, sgapf=31, slim=0.05, qend=0.3
jdlpr=0, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
ProblemTime=
$0.25,3.533,16.263,29.058,33.067$
$48.767,68.442,81.179,85.104,102.808$
118.246, 134.467, 136.1, 146.996, 155.388
172.442, 174.108, 183.629, 201.433, 207
217, 232.708, 250.45, 263.15, 267.767
274.05, 289.263, 302.029, 304.958, 311.213
$323.579,339.713,357.35,369.704,383.542$
393.567, 394.933, 399.079, 414.583, 430.558
444.083, 458.017, 475.704, 479.117, 486.983
502.708, 519.721, 532.017, 533.021, 533.271
$533.77,534.271,534.315,534.565$
qmpy=
$4.836,9.675,9.594,9.768,9.321$
9.085, 9.318, 6.637, 6.08, 6.08
5.928, 6.054, 8.819, 9.45, 9.109
9.583, 8.739, 9.636, 9.056, 6.409
6.287, 6.795, 6.314, 7.176, 8.979
$9.322,9.667,9.296,9.85,9.405$
9.163, 6.742, 6.565, 6.489, 6.742
7.202, 6.719, 6.312, 9.268, 9.002
$9.295,9.242,9.482,6.916,6.838$
$6.709,6.736,6.812,0,3.482$
6.966, 6.966, 11.517, 5.758
$\mathrm{nsp}=0$
$\mathrm{p} 2=1035.57, \mathrm{tw}=554, \mathrm{go}=0$
iq=0, fa=1
$x(1)=$
$0,0.16363,0.4909,0.81816,1.14542$
1.30906
$q f(1)=$

```
33, 35.73, 41, 40.58, 33.83
    30
jn=6
jst=
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1
$end
```


Inter-Ramp Rod 16 FGR Case

* GOESINS:

```
FILE05='nullfile', STATUS='scratch', FORM='FORMATTED',
    CARRIAGE CONTROL='LIST'
*
* GOESOUTS:
FILE06='outirmp16.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='irrmp16.plot',
    STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'
/*************************************************************************
```

 Inter-Ramp Rod 16
 \$frpen
 im=25, na=6,
 ngasr \(=45\),
 \$end
 \$frpcon
 \(\mathrm{cpl}=1.93, \mathrm{crdt}=0 ., \mathrm{dco}=0.4929\), thkcld \(=0.034\),
 den = 95., thkgap=0.0025, dishsd \(=0.049\), dspg \(=0.42\),
 dspgw \(=0.055\), enrch \(=3.5\), fa= 1.146, fgpav \(=14.7\),
 hplt \(=0.51\), hdish \(=0.0102\), \(i c m=2\),
 icor \(=0\), idxgas \(=1, i p l a n t=-3, i q=1, j d l p r=1\),
 totl \(=1.322\),pitch \(=0.56\), crephr=1.0, nplot=1,
 rc \(=0.0\), roughc \(=3.1 e-5\),
 roughf \(=5.96 \mathrm{e}-5, \mathrm{vs}=8\),
 nunits \(=1\), rsntr \(=120\). ,
 flux \(=7 * 0.18 \mathrm{e} 17, \mathrm{p} 2(1)=1068\), tw(1) \(=500.0, \mathrm{go}(1)=6 \mathrm{E} 5\),
 ProblemTime =
 1., 16.6, 60., 70., 85.,
 116, 136, 202, 242, 250,
 268, 285, 300, 331, 360,
 395, 412, 430, 473, 495,
 \(525,550,551,551.5,552\)
 qmpy =
 13.1, 13.1, 12.2, 12.7, 7.96,
 8.08, 8.5, 12.2, 8.6, 9.1,
 8.2, 12.2, 12.5, 11.6, 8.7,
 8.7, 11.7, 10.9, 11.3, 9.1,
 8.6, 8.6, 8.8, 14.6, 14.6
 slim \(=.05\),
 \$end

Inter-Ramp Rod 18 FGR Case

```
* GOESINS:
FILE05='nullfile', STATUS='scratch', FORM='FORMATTED',
                        CARRIAGE CONTROL='LIST'
*
* GOESOUTS :
FILE06='outirmp18.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
/**********************************************************************
    Inter-Ramp Rod 18
    $frpcn
    im=25, na=6,
    ngasr = 45,
    $end
    $frpcon
    cpl = 1.93, crdt = 0., dco = 0.4929, thkcld = 0.034,
    den = 95., thkgap=0.0025, dishsd = 0.049, dspg = 0.42,
    dspgw = 0.055, enrch = 3.5, fa= 1.146, fgpav = 14.7,
    hplt = 0.51, hdish = 0.0102, icm = 2,
    icor = 0, idxgas = 1, iplant =-3, iq = 1, jdlpr = 1,
    totl = 1.322,pitch = 0.56,
    rc = 0.0, roughc = 3.1e-5,
    roughf = 5.96e-5, vs = 8,
    nunits = 1, rsntr = 120.,
    flux = 7*0.18e17, p2(1) = 1068, tw(1) = 500.0, go(1) = 6E5,
    ProblemTime =
    1., 28, 46, 68, 100,
    135, 155, 185, 200, 250, 262,
    272, 300, 301, 324, 360,
    402, 430, 461, 478, 514,
    550, 551, 551.5, 552
    qmpy =
        10.7, 10.7,10.06,10.36, 6.9,
        6.9,10.45, 10.7,10.06, 7.16,
    8.00, 9.90,10.50,10.97,10.36,
    7.38, 7.38, 10.2, 10.2,10.36,
    7.47, 7.47, 7.60, 12.5,12.5,
slim = .05,
$end
```


A. 41 Ramped Halden/DR-2 Rods

The Risø Fission Gas Release Project was an international, group-sponsored program administrated by Risø Laboratories, Denmark, from 1980 to 1981. The objective was to investigate the impact of extended burnup and EOL power ramping on FGR in BWR-type fuel rods. This was done by performing powerbumping tests in the DR-2 reactor (Denmark) on 9 of the 14 rods irradiated in test fuel assembly IFA-148. This assembly was operated in the Halden reactor, Norway, from 1968 to 1979. The power ramps featured 24 -hour hold periods at the peak power level, with the peak power level varied among the tests. These tests were supplemented by nondestructive examinations before and after the bumping irradiations, rod puncturing/gas analysis on all tested rods, and detailed destructive examinations on selected rods.

Three of the bumped rods were selected as FRAPCON-3.4 FGR assessment cases: rods F7-3, F9-3, and F14-6 (Knudson et al., 1983), which had rod-average burnups of 35, 33, and $27 \mathrm{GWd} / \mathrm{MTU}$, respectively. The analyses of plenum gas ${ }^{85} \mathrm{Kr}$ activity before and after bumping were performed, and these were calibrated against the post-bump rod puncture results to yield an estimate of the net FGR caused by the power bumping. Thus, these cases provide the opportunity to assess the transient power induced shortterm FGR predictions of the FRAPCON-3.4 FGR model.

The IFA-148 assembly contained a total of 14 short BWR-type test rodlets, with 7 rods each in two clusters (upper and lower clusters). The fuel pellets were 5 percent enriched sintered urania, with some variations in density and grain size. These two assessment cases, the nominal grain size and the fuel pellet densities, are equal (13 to 16 micron grain size and density of 93.4 percent TD, with a 0.6 percent increase upon resinter). The rods were initially filled with 1 atm helium fill gas.

The input files used for the $\mathrm{UO}_{2} \mathrm{FGR}$ assessments are shown below.

F14-6 Ramped Rod

```
* GOESINS:
FILE05='nullfile', STATUS='scratch', FORM='FORMATTED',
    CARRIAGE CONTROL='LIST'
*
* GOESOUTS:
FILE06='outF14-6.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
/**************************************************************************
    Riso FGP Rod F14-6
    $frpcn
    im=31,
    na =5, ngasr = 45,
    $end
    $frpcon
    cpl = 1.79, crdt = 0.0, thkcld = 0.0205, dco = 0.5472,
    pitch = 0.6,fa=1.,
    den = 93.4, thkgap = 0.00355, dspg = 0.5, dspgw = 0.03,
    enrch = 5.0, fgpav = 14.7,
    hplt = 0.51, icm = 2, icor = 0,
    idxgas = 1, iplant = -4, iq = 0, jdlpr = 1,
    totl = 2.627,
        roughc = 2.5e-5, roughf =2.5e-5, vs = 8.0,
    nunits = 1, rsntr = 66., nsp =1,
    flux = 6*5.E15, p2(1) = 21*500, 10*1030.,
    tw(1) = 21*464, 10*500.,
```

```
go(1) = 31*0.0, jn = 7,7,7,7,7,
jst = 1,1,2, 5*3, 3*4, 5*3, 4, 1,1,2,3,10*5
    ProblemTime=
        1.0, 28., 40., 140., 240.,
    340., 440., 556., 656., 756.,
    808., 908., 1008., 1108., 1208.,
1304., 1351., 1451., 1587., 1613.,
1702.
1702.5,1702.55, 1702.6, 1702.65,
1703.0, 1703.5,1704.0,1704.5,
1705.0, 1705.65
    qmpy =
    3.5, 7.29, 10.43, 7.22, 7.22,
7.22, 7.22, 7.22, 6.01, 6.01,
6.01, 4.60, 4.60, 4.60, 4.60,
4.60, 5.38, 3.81, 3.81, 4.68,
2.97,
5.4, 6.4, 7.4, 8.4,
6*8.76
x(1) =
0., 0.5, 0.85, 1.0, 1.5, 2.0, 2.627,
0., 0.5, 0.85, 1.0, 1.5, 2.0, 2.627,
0., 0.5, 0.85, 1.0, 1.5, 2.0, 2.627,
0., 0.5, 0.85, 1.0, 1.5, 2.0, 2.627,
0., 0.5, 0.85, 1.0, 1.5, 2.0, 2.267
qf(1) =
1.29, 1.27,1.26, 1.16, 1.0, 0.79, 0.47,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.16, 1.13, 1.14, 1.09, 1.0, 0.88, 0.69,
1.09, 1.08, 1.08, 1.05, 0.999, 0.93, 0.818
1.54, 1.54, 1.54, 1.41, 0.975, 0.53, 0.30
    slim = .05,
    $end
```


F7-3 Ramped Rod

* GOESINS:

```
FILE05='nullfile', STATUS='scratch', FORM='FORMATTED',
    CARRIAGE CONTROL='LIST'
```

*
* GOESOUTS:
FILE06='outF7-3.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'

Riso FGP Rod F7-3
\$frpen
im=38, na $=5$,
ngasr $=45$,
\$end
\$frpcon
cpl $=1.79$, crdt $=0.0$, thkcld $=0.0213, \mathrm{dco}=0.5472$,
pitch $=0.6, f a=1 .$,
den $=93.4$, thkgap $=0.00355, \mathrm{dspg}=0.5, \mathrm{dspgw}=0.03$,
enrch $=5.0$, fgpav $=14.7$, crephr=1.0,
hplt $=0.51$, icm $=2$, icor $=0$,
idxgas = 1, iplant $=-4$, iq $=0, j d l p r=1$,
totl $=2.627$,
roughc $=2.5 e-5$, roughf $=2.5 e-5, ~ v s=8.0$,
nunits $=1$, rsntr $=66 ., \mathrm{nsp}=1$,

```
flux = 6*5.E15, p2(1) = 21*500, 17*1030.,
tw(1) = 21*464, 17*500.,
go(1) = 0.0, jn = 7,7,7,7,7,
jst = 1,1,2, 5*3, 3*4, 5*3, 4, 1,1,2,3,17*5
    ProblemTime=
        1.0, 28., 40., 140., 240.,
    340., 440., 556., 656., 756.,
    808., 908., 1008., 1108., 1208.,
1304., 1351., 1451., 1587., 1613.,
1702.
1702.3, 1702.35,1702.4,1702.45,
1702.8, 1703.3,
1703.35,1703.4,1703.45,1703.6,
1703.7,1703.75,1703.8,1703.85,
1703.9,1704.1, 1704.6
    qmpy =
    4.5, 9.33,13.33, 9.24, 9.24,
9.24, 9.24, 9.24, 7.68, 7.68,
7.68, 5.89, 5.89, 5.89, 5.89,
5.89, 6.88, 4.87, 4.87, 5.98,
3.8,
3.6, 4.5,5.5,6.5,6.98, 6.98,
6.5,5.5,4.5,3.6,
4.5,5.5,6.5,7.5,8.5,9.2,
9.2,
x(1) =
0., 0.5, 0.85, 1.0, 1.5, 2.0, 2.627,
0., 0.5, 0.85, 1.0, 1.5, 2.0, 2.627,
0., 0.5, 0.85, 1.0, 1.5, 2.0, 2.627,
0., 0.5, 0.85, 1.0, 1.5, 2.0, 2.627,
0., 0.5, 0.85, 1.0, 1.5, 2.0, 2.627
qf(1) =
1.29, 1.27,1.26, 1.16, 1.0, 0.79, 0.47,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.16, 1.13, 1.14, 1.09, 1.0, 0.88, 0.69,
1.09, 1.08, 1.08, 1.05, 0.999, 0.93, 0.818
1.47, 1.47, 1.47, 1.33, 0.922, 0.51, 0.28
    slim = .05,
    $end
```


F9-3 Ramped Rod

```
* GOESINS:
FILE05='nullfile', STATUS='scratch', FORM='FORMATTED',
                CARRIAGE CONTROL='LIST'
*
* GOESOUTS:
FILE06='outF9-3.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
/*****************************************************************************
    Riso FGP Rod F9-3
    $frpcn
    im=27,
    na =5, ngasr = 45,
    $end
    $frpcon
    cpl = 1.79, crdt = 0.0, thkcld = 0.0213, dco = 0.5472,
    pitch = 0.6,fa = 1.,
    den = 93.4, thkgap = 0.00355, dspg = 0.5, dspgw = 0.03,
```

```
enrch = 5.0, fgpav = 14.7,
hplt = 0.51, icm = 2, icor = 0,
idxgas = 1, iplant = -4, iq = 0, jdlpr = 1,
totl = 2.627,
    roughc = 2.5e-5, roughf =2.5e-5, vs = 8.0,
nunits = 1, rsntr = 66., nsp =1,
flux = 6*5.E15, p2(1) = 21*500, 6*1030.,
tw(1) = 21*464, 6*500.,
go(1) = 27*0.0, jn = 7, 7,7,7,7,
jst = 1,1,2, 5*3, 3*4, 5*3, 4, 1,1,2,3,6*5
    ProblemTime=
        1.0, 28., 40., 140., 240.,
    340., 440., 556., 656., 756.,
    808., 908., 1008., 1108., 1208.,
1304., 1351., 1451., 1587., 1613.,
1702.,
1702.4,
1703.25,1703.667,1704.5,1704.83
1704.9
    qmpy =
    4.5, 9.33,13.33, 9.24, 9.24,
9.24, 9.24, 9.24, 7.68, 7.68,
7.68, 5.89, 5.89, 5.89, 5.89,
5.89, 6.88, 4.87, 4.87, 5.98,
4.5,5.64,6.8,7.9,3*9.05,
    x(1) =
0., 0.5, 0.85, 1.0, 1.5, 2.0, 2.627,
0., 0.5, 0.85, 1.0, 1.5, 2.0, 2.627,
0., 0.5, 0.85, 1.0, 1.5, 2.0, 2.627,
0., 0.5, 0.85, 1.0, 1.5, 2.0, 2.627,
0., 0.5, 0.85, 1.0, 1.5, 2.0, 2.267
qf(1) =
1.29, 1.27,1.26, 1.16, 1.0, 0.79, 0.47,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.16, 1.13, 1.14, 1.09, 1.0, 0.88, 0.69,
1.09, 1.11, 1.09, 1.05, 0.999, 0.93, 0.818
1.53, 1.53, 1.53, 1.43, 0.991, 0.535, 0.310
    slim = .05,
    $end
```


A. 42 Risø-3 Ramped Rods

The Risø National Laboratory in Denmark has carried out three irradiation programs of slow ramp and hold tests, so called "bump tests," to investigate FGR and fuel microstructural changes. The third and final project, which took place between 1986 and 1990, bump-tested fuel re-instrumented with both pressure transducers and fuel centerline thermocouples.

The innovative technique used for refabrication involved freezing the fuel rod to hold the fuel fragments in position before cutting and drilling away the center part of the solid pellets to accommodate the new thermocouple.

The fuel used in the project was from IFA-161 irradiated in the Halden BWR to $52 \mathrm{GWd} / \mathrm{MTU}$, GE BWR fuel irradiated in Quad Cities 1 and Millstone 1 from 23 to $45 \mathrm{GWd} / \mathrm{MTU}$, and ANF PWR fuel irradiated in Biblis A (Germany) to $43 \mathrm{GWd} / \mathrm{MTU}$. All these rods were subsequently ramped in the DR-3 reactor.

Four of the GE BWR rods (GE2, GE4, GE6, and GE7) (Chantoin et al., 1997) and two of the ANF rods (AN1 and AN8) (Chantoin et al. 1997) were selected to assess the FRAPCON-3.4 predictions of UO_{2} FGR and cladding hoop strain. The input files used for the UO_{2} FGR assessments and cladding hoop strain assessments are shown below.

GE-2 FGR Case

```
* GOESINS:
FILE05='nullfile', STATUS='scratch', FORM='FORMATTED',
    CARRIAGE CONTROL='LIST'
*
* GOESOUTS:
FILE0 6='outge2notc.n'
', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
/***********************************************************************
    Riso3 bumped rod GE-2
    $frpcn
    im=54, na=12, nr=17,
    mechan = 2, ngasr = 45,
    $end
    $frpcon
    cpl = 3.0, dco = 0.4827, thkcld = 0.0321,
    idxgas = 1,
    den = 95.2, rsntr = 44,
    thkgap = 0.00433, rc = 0.0, dspg = 0.39,
    dspgw = 0.04, enrch = 3.0,pitch=0.56, fa=1.0,
    fgpav = 104.5, hplt = 0.41, hdish= 0.0,
    icm = 2, icor = 0,crephr=1.0,
    iq = 0,iplant=-3,
    jdlpr = 0, jn(1) = 5,5,
    jst(1) = 40*1,14*2,
    totl = 0.882, roughc = 4.5e-5, roughf = 8.5e-5, vs = 5.0,
    nunits = 1, nsp = 1,
    p2(1)=54*1000, tw (1) = 40*570., tw (41) =14*550.,go(1)= 54*0.0,
    qf(1)=1., 1., 1.,1., 1.,
    qf(6)=0.915, 0.982, 1.035, 1.05, 0.975,
    x(1)=0.0,0.2205,0.441,0.6615,0.882,
    x(6)=0.0,0.2205,0.441, 0.6615,0.882,
        ProblemTime =
```

```
0.1, 0.2, 0.3,
    50.,100.,150.,200.,
250.,300.,350.,400.,
450.,500.,550.,600.,
650.,700.,750., 800.,
850. 900.,950.,1000.,
1050.,1100.,1150.,1200.,
1250.,1300.,1350.,1400.,
1450.,1500.,
1550.,1600.,1650.,1700.,
1750.,1800.,1850.,
1850.05,1850.10,1850.15,1850.20,1850.25,
1850.30,1850.40,1850.60,1850.80,1851.00,
1851.4,1851.8,1852.2,1852.6
qmpy =
2.,4.,6.,
4*7.5,
4*5.5,
16*4.8,
4*5.35,
2*4.3,
7*5.6,
2.,3.,4.,5.,6.,
7.,8.,10.5,11.2,11.7,
12.35,12.35,12.35,12.35
$end
```


GE-4 FGR Case

* GOESINS:
FILE05='nullfile', STATUS='scratch', FORM='FORMATTED',
CARRIAGE CONTROL='LIST'
*
* GOESOUTS:
FILE06='outge4notc.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'

Riso3 bumped rod GE-4
\$frpen
im=46, na=12, nr=17,
mechan $=2$, ngasr $=45$,
\$end
\$frpcon
$\mathrm{cpl}=2.8, \mathrm{dco}=0.48307$, thkcld $=0.032$,
den $=96.2$, rsntr $=33$,
thkgap $=0.00464, \mathrm{rc}=0.0, \mathrm{dspg}=0.39$,
dspgw $=0.04$, enrch $=2.6$, pitch $=0.56$, fa=1.,
fgpav $=104.5$, hplt $=0.41$, hdish= 0.0,
icm $=2$, icor $=0$, idxgas $=1$,
iq $=0, i p l a n t=-3$,
jdlpr $=0, j n(1)=5,5$,
jst(1) = 20*1,26*2,
totl $=0.8825$, roughc $=4.5 e-5$, roughf $=8.5 e-5, \mathrm{vs}=5.0$,
nunits $=1, \mathrm{nsp}=1$,
$\mathrm{p} 2(1)=46 * 1000, \operatorname{tw}(1)=20 * 570 ., \operatorname{tw}(21)=26 * 552 ., \mathrm{go}(1)=46 * 0.0$,
qf(1)=1.,1.,1.,1.,1.,
$q f(6)=0.984,1.006,1.025,1.017,0.968$,
$\mathrm{x}(1)=0.0,0.2205,0.441,0.6615,0.8825$,
$x(6)=0.0,0.2205,0.441,0.6615,0.8825$,

```
    ProblemTime =
0.1, 0.2, 0.3,
    50.,100.,150.,200.,
250.,300.,350.,400.,
450.,500.,550.,600.,
650.,700.,750.,800.,
850.,
850.05, 850.10, 850.15, 850.20, 850.25,
850.30, 850.40, 850.50, 850.70, 850.9,
851.10, 851.30, 851.50,
851.90, 852.30, 852.90,
852.91, 852.92, 852.93, 852.94, 852.95,
852.96, 852.97, 852.98, 852.99, 853.00
qmpy =
2.,4.,6.,
8*8.0,
6*6.0,
3*7.0,
2.,3.,4.,5.,6.,
7.,8.,9.,10.6,11.2,
11.6, 12.2, 12.6,
3*13.2,
12., 11., 10., 9., 8.,
    7., 8., 9., 11.5, 13.2
4*13.2
$end
```


GE-6 FGR Case

* GOESINS:

```
FILE05='nullfile', STATUS='scratch', FORM='FORMATTED',
    CARRIAGE CONTROL='LIST'
*
* GOESOUTS:
FILE06='outge6notc.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
/*****************************************************************************
    Riso3 bumped rod GE-6
$frpcn
im=72, na=5, nr=17,
mechan = 2, ngasr = 45,
$end
$frpcon
cpl = 2.9, dco = 0.48268, thkcld = 0.03209,
den = 95.2, rsntr = 44.0,pitch=0.56, fa=1.0,
thkgap = 0.00435, rc = 0.0, dspg = 0.39,
dspgw = 0.04, enrch = 3.037,
fgpav = 104.5, hplt = 0.41, hdish= 0.0,
icm = 2, icor = 0, idxgas = 1,
iq = 0,iplant=-3,
jdlpr = 0, jn(1) = 5,5
jst(1) = 40*1, 32*2
totl = 0.961, roughc = 4.5e-5, roughf = 8.5e-5, vs = 5.0,
nunits = 1, nsp =1,
p2(1) = 72*1000, tw(1) = 40*570., 32*552., go(1) = 72*0.0,
qf(1)=1., 1., 1.,1.,1.,
qf(6) = 1.004, 1.002, 1.019, 1.023, 0.952,
x(1) = 0.0, 0.24025, 0.4805, 0.72075, 0.961,
x(6) = 0.0, 0.24025, 0.4805, 0.72075, 0.961,
```

```
    ProblemTime =
0.1, 0.2, 0.3,
    50.,100.,150.,200.,
250.,300.,350.,400.,
450.,500.,550.,600.,
650.,700.,750.,800.,
850. 900.,950.,1000.,
1050.,1100.,1150.,1200.,
1250.,1300.,1350.,1400.,
1450.,1500.,
1550.,1600.,1650.,1700.,
1750.,1800.,1850.,
1850.1, 1850.2, 1850.3, 1850.4, 1850.45,
1850.5, 1851.0, 1851.2, 1851.3, 1851.5,
1851.7, 1851.9, 1852.0, 1852.2, 1852.4,
1852.6, 1852.8, 1853.0, 1853.2, 1853.4,
1853.6, 1853.8, 1854.0, 1854.2, 1854.4,
1854.6, 1854.8, 1855.0, 1855.2, 1855.4,
1855.6, 1855.8
    qmpy =
2.0, 4.0, 6.0,
7.5, 8.0, 9.0, 9.5,
9.0, 8.0, 7.0, 6.0,
5.0, 3.5, 7.0, 8.0,
7.0, 8.5, 7.75, 7.0,
5.5, 4.0, 3.0, 2.0,
6.0, 6.5, 6.75, 7.0,
6.5, 5.75, 5.0, 4.0,
4.0, 4.0,
4.0, 4.0, 4.5, 4.75,
4.5, 4.5, 4.5,
2., 4., 6., 8., 10.,
11.7,11.8,11.6,11.2,11.3,
11.4,11.5,11.6,10.8,10.85,
10.9,10.95,11.,11.,11.05,
11.1,11.15,11.2,11.25,11.3,
11.3,11.35,11.4,11.4,11.45
11.5,11.5
    $end
```


GE-7 FGR Case

```
* GOESINS:
FILE05='nullfile', STATUS='scratch', FORM='FORMATTED',
    CARRIAGE CONTROL='LIST'
*
* GOESOUTS:
FILE06='outge7.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='ge7.plot',
                STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'
/***********************************************************************
            Riso3 bumped rod GE-7
$frpcn
im=50, na=10, nr=17,
mechan = 2, ngasr = 45,
$end
$frpcon
cpl = 5.63, thkcld = 0.03209,
```

```
den = 95.2, rsntr = 44.0,dco=0.48268,
thkgap = 0.00435, rc = 0.0, dspg = 0.39,
dspgw = 0.04, enrch = 3.0,
fgpav = 42.06, hplt = 0.41, hdish= 0.0,
icm = 2, icor = 0, idxgas = 1,
iq = 0,fa=1.0,crephr=1.0,nplot=1
jdlpr = 0, jn(1) = 3,12,
jst(1) = 41*1, 9*2
totl = 2.47, roughc = 4.5e-5, roughf = 8.5e-5, vs = 5.0,
nunits = 1, nsp = 1,iplant=-3,pitch=0.56,
p2(1) = 50*1000, tw(1) = 41*570., tw(42)=9*552., go(1) = 50*0.0,
qf(1)=0.98, 1.02, 0.98,
qf(4) =
1.313,1.351, 1.427, 1.421, 1.366, 1.242,
1.064,0.872, 0.657, 0.400, 0.201, 0.1015
x(1) = 0.0,1.25, 2.47
X(4) = 0.0,0.1235,0.370,0.6175,
0.8645,1.1115,1.3585,1.6055,1.8525,
2.0995,2.3465,2.47
    ProblemTime =
0.1, 0.2, 0.3,
    50.,100.,150.,200.,
250.,300.,350.,400.,
450.,500.,550.,600.,
650.,700.,750.,800.,
850. 900.,950.,1000.,
1050.,1100.,1150.,1200.,
1250.,1300.,1350.,1400.,
1450.,1500.,
1550.,1600.,1650.,1700.,
1750.,1800.,1850.,1900.,
1900.2, 1900.4, 1900.6, 1900.85,
1900.87, 1900.89, 1900.91,
1900.93, 1901.08
    qmpy =
2.0, 4.0, 6.0,
8.5, 7.5, 7.5, 6.5,
6.0, 6.0, 6.0, 6.0,
5.0, 4.0, 6.0, 6.0,
6.5, 6.5, 5.25, 5.25,
5.25,4.5, 3.5, 2.5,
2.5, 5.0, 5.0, 5.0,
4*5.0,
7*4.0, 4.5,
5.0, 4.0,
2.0, 4.0, 6.0, 7.0,
8.0, 9.0, 10.0,
10.8, 10.8
    $end
```


AN1 FGR Case

```
* GOESINS:
FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
    CARRIAGE CONTROL='NONE'
*
* GOESOUTS:
FILE06='AN1.Out', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
```

```
FILE66='AN1.plot', STATUS='UNKNOWN', FORM='FORMATTED',
                CARRIAGE CONTROL='LIST'
/*************************************************************************
RISO3 bump test AN1 (cb9) with 42 hour hold time
    $frpcn
    im=96 , na=12,nr=25,
    mechan = 2, ngasr = 45,
    $end
    $frpcon
    dco=0.4256, thkcld=0.03055, thkgap=0.00405, totl=0.9678, cpl=3.4,
    dspg=0.350, dspgw=0.050, vs=10,
    hplt=0.2720, rc=0.0, hdish=4.887e-3, dishsd=0.0473,
    enrch=2.95, fotmtl=2.0,
    den=93.74, roughf=8.5e-5, rsntr=98.64,
    icm=4, cldwks=0.5, roughc=2.5e-5,
    idxgas=1, fgpav=187.0,igas=55,
    iplant=-2,nsp=1, p2=54*2251.0,42*2219 tw=54*544.5,42*622.9,
    go=54*2.61e6,42*2.0e7 pitch=0.568,
    nunits=1, crephr=10.0, jdlpr=0, nplot=1,
    jn=5,5, jst=54*1,42*2,iq=0, fa=1,
    qf(1) = 1.0,1.0,1.0,1.0,1.0
    x(1) = 0.000,0.24195,0.4839,0.72585,0.9678,
    qf(6)=0.983,1.031,1.059,0.995,0.933,
    x(6) = 0.000,0.24195,0.4839,0.72585,0.9678,
    ProblemTime =
            0.100, 0.200, 0.300, 4.375,
        14.583, 29.167, 58.333, 87.500, 116.667,
        145.833, 175.000, 204.167, 233.333, 262.500,
        273.500, 277.875, 288.083, 302.667, 331.833,
        361.000, 390.167, 419.333, 448.500, 477.667,
        506.833, 536.000, 565.167, 594.333, 623.500,
        636.583, 640.958, 651.167, 665.750, 694.917,
        724.083, 753.250, 782.375, 811.542, 840.708,
        869.875, 899.042, 917.375, 921.750, 931.958,
        946.583, 975.750,1004.958,1034.125,1063.333,
    1092.542,1121.708,1150.917,1180.083,1198.250,
    1198.264,1198.265,1198.278,1198.347,1198.349,
    1198.358,1198.520,1198.525,1198.699,1198.861,
    1199.024,1199.027,1199.191,1199.358,1199.360,
    1200.234,1200.235,1200.245,1200.247,1200.255,
    1200.265,1200.266,1200.274,1200.276,1200.285,
    1200.296,1201.170,1201.172,1201.173,1201.180,
    1201.182,1201.193,1201.202,1201.213,1201.222,
    1201.233,1201.234,1201.244,1201.245,1201.247,
    1201.249,1201.256,
    qmpy =
    1.000,2.000,3.000,3.962,3.780,
    3.719,3.749,3.871,3.962,4.023,
    4.054,4.084,4.084,4.115,4.115,
    7.590,7.468,7.468,7.407,7.224,
    7.071,6.949,6.828,6.736,6.645,
    6.614,6.584,6.553,6.523,6.523,
    6.066,5.913,5.852,5.852,5.791,
    5.830,5.730,5.669,5.669,5.700,
    5.730,5.730,7.193,6.736,6.706,
    6.645,6.462,6.309,6.157,6.005,
    5.883,5.791,5.730,5.700,
```

```
1.280,
2.377,4.054,5.791,6.066,6.828,
7.620,8.352,9.144,9.632,10.150,
10.546,10.851,11.460,11.796,12.131,
10.119,8.809,6.675,6.035,7.193,
7.742,8.748,9.144,10.150,11.186,
12.101,11.887,9.906,8.717,8.138,
6.035,6.980,8.412,9.936,11.064,
11.460,12.283,9.540,4.420,1.463,
0.366,
slim = .05,
$end
```


AN8 FGR Case

* GOESINS:
FILEO5='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
CARRIAGE CONTROL='NONE'
*
* GOESOUTS:
FILE06='AN8.Out', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='AN8.plot', STATUS='UNKNOWN', FORM='FORMATTED',
CARRIAGE CONTROL='LIST'

RISO3 bump test AN8 (cb10) with 4 hour hold time
\$frpen
im=72, na=12,nr=25,
mechan $=2$, ngasr $=45$,
\$end
\$frpcon
dco=0.4256, thkcld=0.0305, thkgap=0.0041, totl=1.778, cpl=2.40,
$\mathrm{dspg}=0.350$, dspgw=0.050, vs=10,
hplt=0.2720, rc=0.0, hdish=4.887e-3, dishsd=0.0473,
enrch=2.95, fotmtl=2.0,
den $=93.74$, roughf=8.5e-5, rsntr=98.64,
icm=4, cldwks=0.5, roughc=2.5e-5,
idxgas=1, fgpav=335.0,
iplant $=-2, \mathrm{nsp}=1, \mathrm{p} 2=55 * 2251.0,17 * 2219$ tw=55*544.5,17*622.9,
go=55*2.61e6,17*2.0e7, pitch=0.568,
nunits=1, crephr=10.0, jdlpr=0, nplot=1,
jn=10,10, jst $=55 * 1,17 * 2$, iq=0, fa=1,
qf(1) $=1.012,1.004,1.004,0.995,0.974$,
$0.996,1.007,1.007,0.999,1.003$,
$q f(11)=1.547,1.585,1.469,1.337,1.188$,
$0.968,0.751,0.558,0.377,0.217$,
$x(1)=0.000,0.198,0.395,0.593,0.790$,
$0.988,1.185,1.383,1.580,1.778$,
$x(11)=0.000,0.198,0.395,0.593,0.790$,
$0.988,1.185,1.383,1.580,1.778$,
ProblemTime =
0.100, 0.200, 0.300, 0.400, 4.375,
14.583, 29.167, 58.333, 87.500, 116.667,
145.833, 175.000, 204.167, 233.333, 262.500,
273.500, 277.875, 288.083, 302.667, 331.833,
361.000, 390.167, 419.333, 448.500, 477.667,
506.833, 536.000, 565.167, 594.333, 623.500,
636.583, 640.958, 651.167, 665.750, 694.917,
724.083, 753.250, 782.375, 811.542, 840.708,

```
    869.875, 899.042, 917.375, 921.750, 931.958,
    946.583, 975.750,1004.958,1034.125,1063.333,
1092.542,1121.708,1150.917,1180.083,1198.250,
1198.258,1198.279,1198.284,1198.294,1198.324,
1198.330,1198.339,1198.347,1198.356,1198.617,
1198.620,1198.625,1198.793,1198.795,1198.796,
1198.797,1198.804,
qmpy =
1.000,2.000,3.000,4.000,4.907,
4.633,4.542,4.572,4.694,4.755,
4.785,4.785,4.755,4.724,4.724,
4.724,7.224,7.041,7.010,6.980,
6.858,6.736,6.645,6.553,6.462,
6.370,6.340,6.309,6.309,6.248,
6.248,6.309,6.126,6.066,6.005,
5.944,5.883,5.852,5.822,5.791,
5.822,5.822,5.822,6.888,6.462,
6.431,6.340,6.126,5.944,5.761,
5.608,5.486,5.364,5.304,5.304,
0.549,2.377,2.865,3.536,4.328,
4.785,5.182,5.639,6.035,6.584,
7.681,8.534,9.083,7.285,3.536,
1.1676,0.518,
slim = .05,
$end
```


GE-2 Cladding Hoop Strain Case

* GOESINS:

FILEO5='nullfile', STATUS='UNKNOWN', FORM='FORMATTED', CARRIAGE CONTROL='NONE'
\star

* GOESOUTS :

FILE06='GE2.out', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='GE2.plot', STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'

RISO-3 Rod GE2 Refabricated from segment ZX114
\$frpen
im=267, nr=17, ngasr=45, na=9
\$end
\$frpcon
$\mathrm{dco}=0.4827$, thkcld=0.03209, thkgap=0.00433, totl=0.95144, cpl=3.478
$\mathrm{dspg}=0.4098$, dspgw=0.0394, vs=10
$h p l t=0.4098$, $r c=0$, hdish=0, dishsd=0.2049
enrch=3, imox=0, comp=0
fotmtl=2, gadoln=0, ppmh $20=0, \operatorname{ppmn} 2=0$
den=95.2, deng=0, roughf=0.0000787, rsntr=43.8, tsint=2911
icm=2, cldwks=0.5, roughc=0.0000197, catexf=0.05, chorg=10
fgpav=95.73, idxgas=1
iplant=-3, pitch=0.6417, icor=0, crdt=0, crdtr=0, flux=10*22100000000000000
crephr=1, sgapf=31, slim=0.05, qend=0.3
jdlpr=0, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
ProblemTime=
4.673, 13.57, 26.584, 41.469, 49.029
$54.848,63.814,73.828,76.925,86.29$

```
92.61, 105.303, 114.861, 124.58, 134.816
145.097, 151.89, 162.126, 172.737, 176.149
183.821, 188.012, 192.202, 196.304, 204.506
208.543, 224.608, 229.064, 237.827, 242.158
246.466, 250.774, 254.311, 258.524, 263.435
267.09, 270.744, 278.123, 281.812, 289.226
303.639, 310.845, 318.331, 325.605, 334.318
337.972, 345.532, 349.446, 361.07, 369.06
377.22, 389.59, 398.453, 407.687, 416.977
426.496, 431.315, 436.195, 441.138, 451.218
456.358, 466.849, 477.709, 488.724, 494.353
499.054, 508.344, 518.104, 527.565, 537.026
546.605, 551.335, 556.125, 565.763, 585.161
590.041, 599.331, 604.033, 618.4, 627.015
635.728, 644.591, 649.698, 660.117, 666.386
679.131, 684.271, 693.561, 702.965, 707.666
726.705, 731.378, 736.023, 746.169, 761.19
770.889, 780.408, 785.383, 795.205, 800.085
814.543, 819.245, 833.013, 842.36, 846.977
854.251, 858.465, 867.644, 876.934, 886.168
900.626, 905.569, 915.518, 925.597, 941.019
951.581, 956.899, 967.836, 978.93, 996.323
1008.278, 1026.492, 1039.237, 1056.183, 1064.657
1077.437, 1090.36, 1099.82, 1112.743, 1125.887
1130.37, 1138.89, 1152.261, 1161.44, 1166.685
1176.831, 1186.977, 1198.071, 1203.783, 1215.04
1226.548, 1236.562, 1251.681, 1257.073, 1268.581
1273.064, 1281.927, 1290.841, 1295.784, 1304.75
1313.086, 1317.165, 1329.213, 1333.188, 1341.097
1345.071, 1352.899, 1360.688, 1368.72, 1381.938
1386.27, 1390.554, 1394.838, 1399.194, 1408.108
1417.233, 1422.144, 1434.192, 1441.398, 1447.24
1458.496, 1469.671, 1475.743, 1482.063, 1487.775
1499.198, 1511.153, 1518.292, 1530.246, 1535.715
1546.499, 1551.78, 1557.173, 1566.995, 1572.205
1582.219, 1587.13, 1596.89, 1601.297, 1605.806
1610.315, 1614.824, 1623.895, 1628.458, 1637.583
1647.344, 1656.982, 1661.742, 1671.203, 1676.114
1681.088, 1685.878, 1690.789, 1704.808, 1709.51
1714.183, 1723.586, 1733.936, 1739.111, 1744.286
1754.849, 1763.23, 1771.611, 1776.094, 1785.008
1789.389, 1793.77, 1807.219, 1816.344, 1820.801
1829.98, 1835.912, 1841.157, 1850.175, 1865.1
1870.607, 1870.675, 1870.677, 1870.698, 1870.717
1870.753, 1870.754, 1870.769, 1870.942, 1870.943
1871.108, 1871.118, 1871.278, 1871.443, 1871.611
1871.776, 1871.781, 1872.691, 1872.693, 1872.703
1872.714, 1872.723, 1872.734, 1872.745, 1872.754
1872.756, 1873.547, 1873.548, 1873.556, 1873.558
1873.568, 1873.579, 1873.588, 1873.589, 1873.599
1873.609, 1873.62, 1873.622, 1873.623, 1873.624
1873.629, 1873.641
qmpy=
5.974, 8.87, 8.077, 8.931, 7.102
9.297, 9.053, 8.016, 8.352, 8.291
8.26, 8.291, 8.26, 8.108, 7.62
7.62, 7.62, 7.59, 7.224, 7.498
```

```
6.309, 6.066, 6.005, 5.974, 5.944
5.974, 5.913, 5.7, 5.7, 5.7
5.73, 5.7, 6.98, 5.669, 4.907
6.614, 6.614, 6.614, 6.706, 6.645
6.767, 6.767, 6.34, 6.584, 5.456
6.492, 6.279, 6.066, 6.188, 6.005
5.883, 5.822, 5.395, 5.212, 5.182
4.999, 4.938, 4.877, 4.816, 4.663
4.572, 4.481, 4.328, 4.298, 4.572
5.426, 5.456, 5.273, 5.365, 5.395
5.365, 5.456, 5.395, 5.365, 5.426
5.395, 5.608, 5.547, 5.547, 5.883
5.822, 5.791, 5.06, 5.029, 4.145
4.206, 5.334, 5.7, 5.7, 5.7
5.578, 5.669, 5.7, 5.029, 5.121
5.182, 5.243, 5.182, 5.212, 5.151
5.182, 5.273, 5.365, 5.395, 5.395
7.071, 6.005, 5.334, 5.273, 5.243
5.029, 4.846, 4.846, 4.755, 4.603
4.481, 4.481, 4.328, 4.267, 4.115
4.023, 3.962, 3.841, 5.669, 5.669
5.669, 5.608, 5.151, 5.73, 5.639
5.608, 5.547, 5.334, 5.334, 4.816
4.968, 4.938, 4.511, 4.298, 4.511
4.45, 2.591, 3.444, 4.511, 2.164
5.334, 5.456, 5.456, 4.907, 5.395
5.913, 5.883, 5.913, 5.974, 6.005
6.035, 6.127, 6.157, 5.852, 5.334
5.486, 5.547, 5.547, 5.456, 5.304
5.212, 4.846, 3.993, 3.414, 4.145
4.298, 4.328, 3.962, 3.81, 4.176
4.145, 4.115, 3.505, 4.206, 4.603
4.724, 4.816, 4.694, 5.151, 4.877
5.06, 5.182, 5.029, 5.639, 5.426
5.426, 5.426, 5.395, 5.365, 5.365
4.999, 5.09, 5.121, 5.151, 4.968
4.907, 5.121, 4.968, 5.273, 5.243
5.304, 5.243, 4.724, 4.663, 4.633
4.542, 5.73, 5.73, 5.365, 5.395
5.547, 5.547, 5.426, 5.334, 5.547
5.334, 4.206, 4.694, 5.304, 4.907
4.42, 0.701, 1.554, 2.682, 4.328
5.121, 5.608, 6.37, 7.59, 7.925
9.053, 9.449, 9.784, 10.455, 11.186
11.735, 12.07, 12.345, 11.826, 9.357
6.492, 7.681, 8.961, 10.241, 11.217
11.857, 12.314, 11.583, 9.205, 8.778
6.309, 7.254, 8.687, 9.205, 10.059
11.125, 12.223, 8.23, 5.273, 3.139
1.341, 0.427
nsp=1
p2=
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
```

```
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1044.27, 1044.27, 1044.27, 1044.27
1044.27, 1044.27, 1044.27, 1044.27, 1044.27
1044.27, 1044.27, 1044.27, 1044.27, 1044.27
1044.27, 1044.27, 1044.27, 1044.27, 1044.27
1044.27, 1044.27, 1044.27, 1044.27, 1044.27
1044.27, 1044.27, 1044.27, 1044.27, 1044.27
1044.27, 1044.27, 1044.27, 1044.27, 1044.27
1044.27, 1044.27, 1044.27, 1044.27, 1044.27
1044.27, 1044.27
tw=
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
```

```
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 552.2, 552.2, 552.2, 552.2
552.2, 552.2, 552.2, 552.2, 552.2
552.2, 552.2, 552.2, 552.2, 552.2
552.2, 552.2, 552.2, 552.2, 552.2
552.2, 552.2, 552.2, 552.2, 552.2
552.2, 552.2, 552.2, 552.2, 552.2
552.2, 552.2, 552.2, 552.2, 552.2
552.2, 552.2, 552.2, 552.2, 552.2
552.2, 552.2
go=
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
```

```
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 0
iq=0, fa=1
x(1)=
0, 0.23786, 0.47572, 0.71358, 0.95144
qf(1)=
1.01, 1.007, 0.995, 0.997, 0.991
x(6)=
0, 0.23786, 0.47572, 0.71358, 0.95144
qf(6)=
0.929, 0.992, 1.038, 1.054, 0.986
jn=5,5
jst=
1, 1, 1, 1, 1
```

$$
1,1,1,1,1
$$

$$
1,1,1,1,1
$$

$$
1,1,1,1,1
$$

$$
1,1,1,1,1
$$

$$
1,1,1,1,1
$$

$$
1,1,1,1,1
$$

$$
1,1,1,1,1
$$

$$
1,1,1,1,1
$$

$$
1,1,1,1,1
$$

$$
1,1,1,1,1
$$

$$
1,1,1,1,1
$$

$$
1,1,1,1,1
$$

$$
1,1,1,1,1
$$

$$
1,1,1,1,1
$$

$$
1,1,1,1,1
$$

$$
1,1,1,1,1
$$

$$
1,1,1,1,1
$$

$$
1,1,1,1,1
$$

$$
1,1,1,1,1
$$

$$
1,1,1,1,1
$$

$$
1,1,1,1,1
$$

$$
1,1,1,1,1
$$

$$
1,1,1,1,1
$$

$$
1,1,1,1,1
$$

$$
1,1,1,1,1
$$

$$
1,1,1,1,1
$$

$$
1,1,1,1,1
$$

$$
1,1,1,1,1
$$

$$
1,1,1,1,1
$$

$$
1,1,1,1,1
$$

$$
1,1,1,1,1
$$

$$
1,1,1,1,1
$$

$$
1,1,1,1,1
$$

$$
1,1,1,1,1
$$

$$
1,1,1,1,1
$$

$$
1,1,1,1,1
$$

$$
1,1,1,1,1
$$

$$
1,1,1,1,1
$$

$$
1,1,1,1,1
$$

$$
1,1,1,1,1
$$

$$
1,1,1,1,1
$$

$$
1,1,1,1,1
$$

$$
1,1,1,1,1
$$

$$
1,1,1,1,1
$$

$$
1,2,2,2,2
$$

$$
2,2,2,2,2
$$

$$
2,2,2,2,2
$$

$$
2,2,2,2,2
$$

$$
2,2,2,2,2
$$

$$
2,2,2,2,2
$$

$$
2,2,2,2,2
$$

$$
2,2,2,2,2
$$

$$
2,2
$$

\$end

GE-4 Cladding Hoop Strain Case

[^0]```
FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
 CARRIAGE CONTROL='NONE'
*
* GOESOUTS:
FILE06='GE4.out',
 STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='GE4.plot',
 STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'
/**
RISO-3 Rod GE4 Refabricated from segment ZW114
 $frpcn
 im=157, nr=17, ngasr=45, na=9
 $end
 $frpcon
 dco=0.4831, thkcld=0.03209, thkgap=0.00453, totl=0.88255, cpl=3.1882
 dspg=0.4098, dspgw=0.0394, vs=10
 hplt=0.4098, rc=0, hdish=0, dishsd=0.2049
 enrch=2.6, imox=0, comp=0
 fotmtl=2, gadoln=0, ppmh2o=0, ppmn2=0
 den=96.2, deng=0, roughf=0.0000787, rsntr=32.9, tsint=2911
 icm=2, cldwks=0.5, roughc=0.0000197, catexf=0.05, chorg=10
 fgpav=95.73, idxgas=1
 iplant=-3, pitch=0.6417, icor=0, crdt=0, crdtr=0, flux=10*22100000000000000
 crephr=1, sgapf=31, slim=0.05, qend=0.3
 jdlpr=0, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
 ProblemTime=
 12.052, 21.126, 36.133, 48.092, 57.691
 69.079, 86.35, 89.218, 98.623, 111.113
 117.283, 127.168, 136.689, 146.17, 155.77
 165.783, 175.303, 184.903, 195.438, 212.09
 216.345, 219.669, 226.287, 232.457, 241.824
 251.345, 254.88, 261.388, 271.947, 278.142
 287.471, 290.606, 296.927, 303.327, 309.753
 319.473, 325.692, 338.335, 344.734, 347.947
 354.4, 360.8, 367.475, 377.845, 381.605
 390.068, 399.341, 403.527, 407.624, 419.85
 428.001, 432.401, 441.405, 449.471, 457.579
 469.678, 478.897, 487.746, 496.028, 504.729
 509.007, 517.707, 525.773, 534.19, 542.256
 546.227, 558.326, 562.16, 565.993, 569.827
 577.455, 581.289, 588.956, 596.585, 608.684
 616.585, 624.368, 628.145, 635.967, 643.828
 647.624, 651.535, 662.866, 670.458, 674.217
 681.846, 686.196, 693.11, 700.118, 707.222
 714.527, 721.319, 735.025, 738.66, 749.566
 753.185, 756.803, 767.658, 775.213, 781.458
 791.137, 794.363, 798.396, 802.45, 810.042
 824.316, 832.299, 832.343, 832.356, 832.365
 832.366, 832.368, 832.389, 832.437, 832.443
 832.454, 832.461, 832.627, 832.631, 832.634
 832.803, 832.806, 832.97, 833.134, 833.299
 833.466, 833.633, 833.8, 834.427, 834.428
 834.436, 834.438, 834.446, 834.447, 834.457
 834.466, 834.468, 834.477, 834.488, 835.279
 835.281, 835.29, 835.292, 835.301, 835.302
 835.312, 835.321, 835.332, 835.342, 835.343
 835.352, 835.354, 835.356, 835.357, 835.358
```

```
835.364, 835.372
```

qmpy=
7.894, 7.864, 7.955, 8.077, 7.681
$8.443,8.443,8.535,7.62,7.651$
$7.894,7.529,7.864,7.986,8.26$
7.986, 8.413, 8.352, 5.273, 6.401
6.279, 7.833, 4.176, 8.169, 8.016
$7.833,7.01,7.559,6.919,7.864$
$7.894,7.894,7.925,7.833,7.864$
$7.864,8.108,7.529,7.59,7.651$
$7.62,7.681,7.346,7.163,6.584$
$5.761,5.304,5.7,5.822,5.852$
$5.852,5.426,5.273,5.913,5.883$
$5.883,5.243,5.395,5.761,5.517$
$5.608,5.486,6.035,5.73,5.974$
6.066, 6.096, 6.523, 6.523, 6.462
$6.492,6.462,6.462,6.431,6.035$
6.157, 6.248, 6.309, 6.096, 6.096
$6.34,6.157,6.309,6.34,6.401$
6.309, 5.578, 6.889, 6.797, 6.645
$6.462,7.376,7.315,6.889,6.95$
$6.98,7.041,6.858,6.675,7.925$
$7.59,7.59,5.974,6.066,7.041$
$6.95,6.279,1.097,0.701,1.158$
$1.92,3.139,4.389,4.542,5.395$
$6.431,7.59,7.986,8.443,8.778$
9.205, 9.479, 9.876, 10.607, 11.247
11.644, 12.162, 12.649, 13.198, 12.924
10.211, 8.809, 6.401, 6.828, 8.291
$9.601,9.937,10.851,11.826,13.228$
12.314, 9.967, 8.626, 6.34, 7.254
8.26, 9.51, 10.668, 11.826, 12.223
13.137, 12.162, 7.498, 3.536, 2.225
$0.945,0.427$
nsp=1
p2=
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68

```
1090.68, 1090.68, 1044.27, 1044.27, 1044.27
1044.27, 1044.27, 1044.27, 1044.27, 1044.27
1044.27, 1044.27, 1044.27, 1044.27, 1044.27
1044.27, 1044.27, 1044.27, 1044.27, 1044.27
1044.27, 1044.27, 1044.27, 1044.27, 1044.27
1044.27, 1044.27, 1044.27, 1044.27, 1044.27
1044.27, 1044.27, 1044.27, 1044.27, 1044.27
1044.27, 1044.27, 1044.27, 1044.27, 1044.27
1044.27, 1044.27, 1044.27, 1044.27, 1044.27
1044.27, 1044.27, 1044.27, 1044.27, 1044.27
1044.27, 1044.27
tw=
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 552.2, 552.2, 552.2
552.2, 552.2, 552.2, 552.2, 552.2
552.2, 552.2, 552.2, 552.2, 552.2
552.2, 552.2, 552.2, 552.2, 552.2
552.2, 552.2, 552.2, 552.2, 552.2
552.2, 552.2, 552.2, 552.2, 552.2
552.2, 552.2, 552.2, 552.2, 552.2
552.2, 552.2, 552.2, 552.2, 552.2
552.2, 552.2, 552.2, 552.2, 552.2
552.2, 552.2, 552.2, 552.2, 552.2
552.2, 552.2
go=
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
```

```
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 0
iq=0, fa=1
x(1)=
0, 0.22064, 0.44127, 0.66191, 0.88255
qf(1)=
1.002, 1.004, 1.002, 0.998, 0.994
x(6)=
0,0.22064,0.44127, 0.66191, 0.88255
qf(6)=
0.984, 1.006, 1.025, 1.017, 0.968
jn=5,5
jst=
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
```

```
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2
$end
```


## GE-6 Cladding Hoop Strain Case

```
* GOESINS:
FILEO5='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
 CARRIAGE CONTROL='NONE'
*
* GOESOUTS:
FILE06='GE6.out',
 STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='GE6.plot',
 STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'
/**
RISO-3 Rod GE6 Refabricated from segment ZX113
 $frpon
 im=298, nr=17, ngasr=45, na=9
 $end
 $frpcon
 dco=0.4827, thkcld=0.03209, thkgap=0.00433, totl=0.96129, cpl=3.4071
 dspg=0.4098, dspgw=0.0394, vs=10
 hplt=0.4098, rc=0, hdish=0, dishsd=0.2049
 enrch=3, imox=0, comp=0
 fotmtl=2, gadoln=0, ppmh2o=0, ppmn2=0
 den=95.2, deng=0, roughf=0.0000787, rsntr=44, tsint=2911
 icm=2, cldwks=0.5, roughc=0.0000197, catexf=0.05, chorg=10
 fgpav=95.73, idxgas=1
 iplant=-3, pitch=0.6417, icor=0, crdt=0, crdtr=0, flux=10*221000000000000000
 crephr=1, sgapf=31, slim=0.05, qend=0.3
 jdlpr=0, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
 ProblemTime=
 6.174, 14.846, 29.227, 41.81, 51.458
 55.794, 64.665, 75.743, 79.401, 86.822
 94.035, 104.512, 114.535, 124.263, 134.884
 145.457, 152.256, 162.547, 172.93, 176.33
 179.886, 187.033, 190.071, 196.124, 199.224
 205.423, 211.698, 225.004, 231.409, 238.091
 241.521, 248.538, 252.849, 256.89, 260.066
 263.984, 267.108, 270.271, 280.082, 283.528
 290.674, 305.588, 313.463, 318.057, 325.203
 333.638, 341.554, 345.703, 349.681, 362.13
 371.209, 380.738, 390.893, 395.904, 406.55
 417.654, 430.003, 436.329, 443.475, 450.968
 459.008, 467.879, 477.178, 487.072, 495.843
 500.464, 511.158, 519.35, 528.354, 539.93
 545.9, 552.611, 556.806, 624.669, 628.647
 637.036, 645.335, 657.148, 668.253, 673.765
 679.052, 690.319, 700.964, 706.681, 717.707
 722.784, 732.743, 742.637, 747.553, 766.039
 770.774, 775.628, 786.549, 801.609, 809.444
 817.442, 821.135, 832.429, 840.264, 852.018
 860.452, 873.533, 882.354, 887.031, 895.42
```

```
898.477, 906.443, 917.314, 928.581, 934.706
948.488, 955.701, 963.658, 981.001, 990.77
1001.061, 1013.312, 1027.604, 1043.04, 1059.46
1078.755, 1098.673, 1103.684, 1118.526, 1128.234
1138.129, 1152.333, 1170.819, 1175.333, 1180.692
1190.983, 1200.814, 1210.402, 1219.7, 1228.727
1237.35, 1245.974, 1254.273, 1266.523, 1283.18
1293.075, 1298.054, 1302.415, 1309.628, 1313.988
1323.231, 1332.586, 1337.765, 1347.413, 1352.81
1358.207, 1369.312, 1375.203, 1381.329, 1387.603
1394.373, 1401.39, 1407.875, 1424.9, 1430.045
1435.519, 1441.031, 1446.968, 1459.831, 1466.912
1476.44, 1483.79, 1491.212, 1498.633, 1513.766
1521.722, 1529.364, 1544.647, 1552.288, 1560.498
1568.622, 1576.579, 1584.789, 1592.913, 1601.123
1608.999, 1617.038, 1624.914, 1632.631, 1640.507
1648, 1655.421, 1662.702, 1670.052, 1677.198
1691.76, 1698.841, 1705.732, 1712.328, 1719.04
1725.693, 1732.124, 1744.988, 1751.262, 1757.436
1763.815, 1770.193, 1775.953, 1781.844, 1787.827
1800.175, 1806.35, 1819.002, 1832.784, 1839.737
1852.93, 1859.946, 1866.273, 1872.209, 1878.239
1886.035, 1894.074, 1907.155, 1914.505, 1914.566
1914.59, 1914.592, 1914.593, 1914.595, 1914.603
1914.633, 1914.635, 1914.636, 1914.688, 1914.694
1914.696, 1914.697, 1914.701, 1914.703, 1914.708
1914.71, 1914.711, 1914.883, 1914.884, 1914.885
1914.887, 1914.891, 1915.095, 1915.716, 1915.717
1915.726, 1915.727, 1915.728, 1915.736, 1915.737
1915.746, 1915.748, 1915.757, 1915.768, 1915.777
1915.779, 1916.612, 1916.613, 1916.621, 1916.623
1916.633, 1916.642, 1916.653, 1916.664, 1916.673
1917.506, 1918.34, 1919.173, 1920.006, 1920.474
1920.494, 1920.495, 1920.504, 1920.505, 1920.516
1920.525, 1920.526, 1920.535, 1920.545, 1920.546
1920.555, 1920.567, 1920.577, 1920.587, 1920.588
1920.597, 1920.598, 1920.608, 1920.609, 1920.618
1920.628, 1920.63, 1920.639, 1920.64, 1920.649
1920.651, 1920.653, 1920.678
qmpy=
5.669, 7.59, 6.919, 7.833, 6.675
8.108, 7.894, 8.413, 8.535, 8.504
8.595, 8.809, 9.175, 9.297, 8.778
8.748, 8.992, 8.931, 8.687, 8.839
8.474, 8.413, 9.754, 9.784, 9.54
9.54, 9.449, 8.839, 9.114, 8.656
8.443, 8.23, 8.382, 9.479, 9.327
7.376, 9.114, 9.022, 8.687, 8.26
7.925, 7.559, 7.163, 7.254, 7.833
6.645, 7.071, 6.736, 7.041, 6.736
6.309, 6.096, 5.852, 5.822, 5.486
5.334, 4.938, 4.816, 4.389, 4.206
3.962, 3.658, 3.475, 3.292, 6.98
6.858, 6.889, 7.132, 7.193, 7.254
7.254, 7.529, 7.498, 7.712, 7.803
7.437, 7.468, 7.833, 7.468, 7.498
7.712, 7.163, 7.437, 6.706, 6.919
```

```
8.321, 8.535, 8.535, 8.504, 8.291
8.077, 7.864, 8.199, 7.925, 7.59
7.407, 7.955, 7.833, 7.529, 7.498
6.919, 6.645, 6.523, 6.127, 3.658
4.785, 5.73, 5.273, 5.121, 4.724
4.328, 4.145, 3.841, 3.536, 3.17
3.048, 2.591, 2.286, 2.073, 1.981
1.676, 6.066, 6.066, 6.157, 6.248
6.066, 6.401, 6.553, 6.675, 5.639
5.852, 6.127, 6.127, 6.401, 6.553
6.889, 6.828, 7.102, 7.224, 5.334
5.883, 5.852, 6.614, 4.115, 6.584
6.188, 6.096, 5.486, 5.852, 5.273
5.395, 5.304, 5.121, 5.029, 4.877
4.724, 4.572, 4.846, 5.243, 5.334
5.09, 5.06, 4.816, 4.511, 4.115
3.627, 3.962, 4.054, 4.115, 4.054
3.78, 4.023, 4.023, 4.054, 3.719
3.78, 3.932, 3.78, 3.841, 3.81
3.993, 3.871, 4.023, 4.115, 4.023
4.206, 4.206, 4.267, 4.267, 4.328
4.237, 4.359, 4.45, 4.633, 4.572
4.572, 4.724, 4.724, 4.785, 4.816
4.724, 4.45, 5.151, 5.09, 4.968
4.785, 4.846, 4.785, 4.389, 4.359
4.542, 4.237, 4.846, 4.968, 4.938
3.841, 3.78, 4.389, 3.871, 0.152
1.25, 1.524, 1.981, 2.377, 2.774
3.048, 2.073, 1.189, 0.122, 1.402
1.646, 2.286, 2.835, 3.292, 4.42
4.755, 5.395, 6.096, 7.071, 8.504
9.784, 11.461, 11.765, 11.644, 10.881
8.809, 8.077, 7.224, 6.035, 6.279
6.98, 7.529, 8.321, 9.479, 10.821
11.064, 11.613, 10.363, 8.748, 7.894
6.066, 6.95, 8.169, 9.51, 10.79
11.522, 11.522, 11.522, 11.522, 11.522
11.43, 9.662, 8.504, 6.95, 5.974
6.95, 7.498, 8.199, 9.418, 9.723
10.729, 11.4, 10.912, 9.723, 9.388
8.413, 7.986, 7.132, 6.828, 5.883
4.724, 4.237, 3.444, 3.139, 2.164
1.859, 1.158, 0.64
nsp=1
p2=
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
```

```
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1044.27
1044.27, 1044.27, 1044.27, 1044.27, 1044.27
1044.27, 1044.27, 1044.27, 1044.27, 1044.27
1044.27, 1044.27, 1044.27, 1044.27, 1044.27
1044.27, 1044.27, 1044.27, 1044.27, 1044.27
1044.27, 1044.27, 1044.27, 1044.27, 1044.27
1044.27, 1044.27, 1044.27, 1044.27, 1044.27
1044.27, 1044.27, 1044.27, 1044.27, 1044.27
1044.27, 1044.27, 1044.27, 1044.27, 1044.27
1044.27, 1044.27, 1044.27, 1044.27, 1044.27
1044.27, 1044.27, 1044.27, 1044.27, 1044.27
1044.27, 1044.27, 1044.27, 1044.27, 1044.27
1044.27, 1044.27, 1044.27, 1044.27, 1044.27
1044.27, 1044.27, 1044.27, 1044.27, 1044.27
1044.27, 1044.27, 1044.27, 1044.27, 1044.27
1044.27, 1044.27, 1044.27, 1044.27, 1044.27
1044.27, 1044.27, 1044.27
tw=
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
```

```
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 552.2
552.2, 552.2, 552.2, 552.2, 552.2
552.2, 552.2, 552.2, 552.2, 552.2
552.2, 552.2, 552.2, 552.2, 552.2
552.2, 552.2, 552.2, 552.2, 552.2
552.2, 552.2, 552.2, 552.2, 552.2
552.2, 552.2, 552.2, 552.2, 552.2
552.2, 552.2, 552.2, 552.2, 552.2
552.2, 552.2, 552.2, 552.2, 552.2
552.2, 552.2, 552.2, 552.2, 552.2
552.2, 552.2, 552.2, 552.2, 552.2
552.2, 552.2, 552.2, 552.2, 552.2
552.2, 552.2, 552.2, 552.2, 552.2
552.2, 552.2, 552.2, 552.2, 552.2
552.2, 552.2, 552.2, 552.2, 552.2
552.2, 552.2, 552.2, 552.2, 552.2
552.2, 552.2, 552.2
go=
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
```

```
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 0
0, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0
iq=0, fa=1
```

```
x(1)=
0,0.24032,0.48064, 0.72096,0.96129
qf(1)=
0.944, 0.992, 1.013, 1.023, 1.028
x(6)=
0, 0.24032,0.48064,0.72096,0.96129
qf(6)=
1.004, 1.002, 1.019, 1.023, 0.952
jn=5,5
jst=
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
```

```
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2
$end
```


## GE-7 Cladding Hoop Strain Case

* GOESINS :

FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED', CARRIAGE CONTROL='NONE'
$\star$

* GOESOUTS:

FILE06='GE7.out',
STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='GE7.plot',
STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'

Rod GE7 Tested on segment ZX115 w/o refabrication \$frpcn
im=249, nr=17, ngasr=45, na=9
\$end
\$frpcon
$\mathrm{dco}=0.4827$, thkcld=0.03209, thkgap=0.00433, totl=2.50033, $\mathrm{cpl}=5.6417$
$\mathrm{dspg}=0.4098$, dspgw=0.0394, vs=15
hplt=0.4098, rc=0, hdish=0, dishsd=0.2049
enrch=3, imox=0, comp=0
fotmtl=2, gadoln=0, ppmh2o=0, ppmn2=0
den $=95.2$, deng=0, roughf=0.0000787, rsntr=44, tsint=2911
icm=2, cldwks=0.5, roughc=0.0000197, catexf=0.05, chorg=10
fgpav=42.06, idxgas=1
iplant=-3, pitch=0.6417, icor=0, crdt=0, crdtr=0, flux=10*22100000000000000
crephr=1, sgapf=31, slim=0.05, qend=0.3
jdlpr=0, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
ProblemTime=
3.894, 12.494, 28.166, 39.381, 49.848
55.184, 66.083, 75.486, 78.595, 84.864
94.267, 106.654, 115.833, 125.086, 134.376
146.813, 149.922, 162.409, 172.294, 175.507
182.816, 186.505, 190.142, 193.796, 197.503
205.026, 212.476, 227.898, 231.696, 239.293
243.129, 246.984, 251, 254.084, 258.368
263.375, 267.136, 270.916, 278.588, 282.523
290.431, 306.411, 314.443, 318.115, 325.565
$334.531,342.242,346.237,350.295,362.343$
$370.679,379.199,387.912,396.878,406.281$
415.8, 425.749, 435.895, 441.25, 452.265
457.976, 469.931, 482.368, 488.793, 493.466

```
501.848, 510.138, 518.43, 530.669, 538.785
546.902, 550.856, 558.805, 566.754, 586.225
590.12, 597.988, 605.896, 617.579, 628.49
639.453, 643.108, 651.224, 659.341, 668.86
678.207, 681.896, 695.852, 702.862, 709.871
724.351, 731.592, 738.866, 747.53, 760.598
769.41, 778.223, 782.436, 795.146, 803.859
812.722, 821.74, 835.268, 844.13, 848.613
853.588, 857.625, 866.971, 876.67, 886.493
896.773, 907.483, 918.42, 924.132, 942.063
954.704, 968.351, 982.63, 998.052, 1006.255
1023.389, 1042.428, 1055.955, 1064.974, 1078.423
1091.794, 1101.373, 1114.153, 1127.075, 1131.383
1140.729, 1150.075, 1159.31, 1169.195, 1178.774
1188.293, 1197.931, 1207.945, 1217.524, 1227.162
1235.194, 1254.155, 1259.162, 1269.175, 1273.82
1283.224, 1292.743, 1298.061, 1302.941, 1313.504
1318.149, 1327.495, 1332.196, 1341.658, 1346.447
1351.236, 1360.874, 1365.548, 1379.826, 1389.465
1394.314, 1399.103, 1409.118, 1419.467, 1425.095
1431.365, 1438.249, 1444.467, 1450.587, 1456.658
1468.801, 1475.335, 1482.04, 1488.018, 1500.066
1506.09, 1519.737, 1526.328, 1538.566, 1545.046
1551.418, 1557.898, 1569.853, 1576.122, 1582.145
1588.077, 1594.101, 1599.813, 1605.524, 1611.236
1616.905, 1622.617, 1628.329, 1639.752, 1645.776
1657.548, 1663.346, 1669.015, 1674.857, 1680.743
1686.413, 1692.254, 1703.593, 1709.263, 1714.891
1720.603, 1727.193, 1732.403, 1742.894, 1748.211
1753.68, 1763.893, 1774.174, 1779.604, 1790.464
1795.894, 1806.678, 1817.935, 1822.636, 1827.486
1832.335, 1838.359, 1844.383, 1850.053, 1866.117
1872.094, 1872.15, 1872.179, 1872.18, 1872.181
1872.182, 1872.212, 1872.22, 1872.23, 1872.241
1872.242, 1872.251, 1872.262, 1872.516, 1872.522
1872.523, 1872.528, 1872.529, 1872.53, 1872.699
1872.7, 1872.701, 1872.703, 1872.708
qmpy=
6.035, 8.199, 7.498, 8.382, 6.736
8.809, 8.626, 7.498, 7.559, 7.498
7.498, 7.59, 7.681, 7.62, 7.59
7.559, 7.559, 7.529, 7.132, 7.315
6.431, 6.37, 6.462, 6.431, 6.34
6.248, 6.309, 6.096, 6.188, 6.188
6.127, 6.096, 5.852, 7.62, 5.486
4.694, 6.248, 6.218, 6.127, 5.974
5.944, 5.883, 5.852, 6.401, 6.309
5.243, 6.096, 5.883, 5.791, 5.852
5.639, 5.517, 5.395, 5.243, 4.999
4.938, 4.724, 4.633, 4.389, 4.267
4.115, 3.932, 3.78, 3.658, 5.029
5.608, 5.669, 5.669, 5.761, 5.791
5.791, 5.944, 5.913, 5.913, 6.035
6.035, 5.974, 5.944, 6.035, 6.462
6.431, 6.431, 5.791, 5.791, 4.938
5.029, 6.37, 6.736, 6.706, 6.706
6.492, 6.492, 6.462, 5.426, 5.395
```

```
5.334, 5.334, 5.578, 5.547, 5.395
5.304, 5.212, 5.212, 5.304, 5.243
4.724, 5.822, 5.029, 4.846, 4.785
4.572, 4.389, 4.298, 4.115, 3.932
3.719, 3.444, 3.292, 3.048, 2.865
2.743, 2.469, 5.212, 5.212, 5.243
5.273, 4.907, 5.517, 5.456, 5.456
5.029, 5.029, 5.09, 4.755, 4.907
4.938, 4.877, 4.694, 4.907, 4.877
2.926, 3.719, 4.694, 2.347, 5.06
4.999, 4.938, 4.42, 4.816, 4.45
5.06, 5.029, 4.999, 4.968, 4.907
4.907, 4.877, 5.029, 4.938, 4.877
4.846, 4.907, 4.694, 4.542, 4.176
3.749, 3.414, 3.78, 3.841, 3.871
3.871, 3.597, 3.505, 3.932, 3.901
3.901, 3.444, 3.566, 3.841, 3.627
3.688, 3.627, 3.932, 3.749, 3.901
3.962, 3.901, 4.115, 4.115, 4.115
4.145, 4.115, 4.115, 4.115, 3.901
3.993, 4.054, 4.145, 4.023, 3.993
4.145, 4.023, 4.145, 4.145, 4.176
4.115, 3.566, 4.511, 4.481, 4.42
4.298, 4.603, 4.572, 4.328, 4.328
4.328,4.359, 4.176, 4.999, 4.846
4.846, 3.901, 3.901, 4.145, 4.389
3.932, 0.579, 1.433, 2.012, 2.804
3.414, 4.42, 4.694, 5.212, 5.669
5.883, 6.248, 6.767, 6.98, 7.041
7.498, 9.114, 9.815, 10.211, 10.821
10.668, 6.462, 2.682, 0.701
nsp=1
p2=
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
```

```
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1090.68, 1090.68, 1090.68, 1090.68
1090.68, 1044.27, 1044.27, 1044.27, 1044.27
1044.27, 1044.27, 1044.27, 1044.27, 1044.27
1044.27, 1044.27, 1044.27, 1044.27, 1044.27
1044.27, 1044.27, 1044.27, 1044.27, 1044.27
1044.27, 1044.27, 1044.27, 1044.27, 1044.27
tw=
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
```

```
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 552.2, 552.2, 552.2, 552.2
552.2, 552.2, 552.2, 552.2, 552.2
552.2, 552.2, 552.2, 552.2, 552.2
552.2, 552.2, 552.2, 552.2, 552.2
552.2, 552.2, 552.2, 552.2, 552.2
go=
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
```

```
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 1140000, 1140000, 1140000, 1140000
1140000, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0, 0, 0
iq=0, fa=1
x(1)=
0, 0.27781, 0.55563, 0.83344, 1.11126
1.38907, 1.66689, 1.9447, 2.22252, 2.50033
qf(1)=
0.983, 1.014, 1.027, 1.027, 1.025
1.017, 0.985, 0.96, 0.981, 0.98
x(11) =
0, 0.27781, 0.55563, 0.83344, 1.11126
1.38907, 1.66689, 1.9447, 2.22252, 2.50033
qf(11)=
1.351, 1.427, 1.421, 1.366, 1.242
1.064, 0.872, 0.657, 0.4, 0.201
jn=10,10
jst=
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
```

| 1, 1, 1, 1, |
| :---: |
| 1, 1, 1, 1, 1 |
| 1, 1, 1, 1, 1 |
| 1, 1, 1, 1, 1 |
| 1, 1, 1, 1, 1 |
| $1,1,1,1,1$ |
| 1, 1, 1, 1, 1 |
| 1, 1, 1, 1, 1 |
| 1, 1, 1, 1, 1 |
| 1, 1, 1, 1, 1 |
| 1, 1, 1, 1, 1 |
| 1, 1, 1, 1, 1 |
| 1, 1, 1, 1, 1 |
| 1, 1, 1, 1, 1 |
| $1,1,1,1,1$ |
| 1, 1, 1, 1, 1 |
| 1, 1, 1, 1, 1 |
| 1, 2, 2, 2, 2 |
| 2, 2, 2, 2, 2 |
| 2, 2, 2, 2, 2 |
| 2, 2, 2, 2, 2 |
| $2,2,2,2$ |
| \$end |

## AN1 Cladding Hoop Strain Case

```
* GOESINS:
FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
 CARRIAGE CONTROL='NONE'
*
* GOESOUTS:
FILE06='AN1.out',
 STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='AN1.plot',
 STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'
/***
RISO-3 Rod AN1 refabricated from segment CB9
 $frpon
 im=93, nr=17, ngasr=45, na=9
 $end
 $frpcon
 dco=0.4256, thkcld=0.03055, thkgap=0.00404, totl=0.96785, cpl=3.515
 dspg=0.3564, dspgw=0.0394, vs=10
 hplt=0.272, rc=0, hdish=0.0113, dishsd=0.0892
 enrch=2.95, imox=0, comp=0
 fotmtl=2, gadoln=0, ppmh2o=0, ppmn2=0
 den=93.74, deng=0, roughf=0.0000787, rsntr=20, tsint=2911
 icm=4, cldwks=0.5, roughc=0.0000197, catexf=0.05, chorg=10
 fgpav=192.9, idxgas=1
 iplant=-2, pitch=0.5512, icor=0, crdt=0, crdtr=0, flux=10*221000000000000000
 crephr=1, sgapf=31, slim=0.05, qend=0.3
 jdlpr=0, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
 ProblemTime=
 4.375, 14.583, 29.167, 58.333, 87.5
 116.667, 145.833, 175, 204.167, 233.333
 262.5, 273.5, 277.875, 288.083, 302.667
 331.833, 361, 390.167, 419.333, 448.5
```

477.667, 506.833, 536, 565.167, 594.333
623.5, 636.583, 640.958, 651.167, 665.75
694.917, 724.083, 753.25, 782.375, 811.542
840.708, 869.875, 899.042, 917.375, 921.75
931.958, 946.583, 975.75, 1004.958, 1034.125
1063.333, 1092.542, 1121.708, 1150.917, 1180.083
1198.25, 1198.324, 1198.325, 1198.338, 1198.407
1198.408, 1198.418, 1198.58, 1198.585, 1198.758
1198.921, 1199.084, 1199.087, 1199.251, 1199.417
1199.42, 1200.294, 1200.295, 1200.304, 1200.306
1200.315, 1200.324, 1200.326, 1200.334, 1200.335
1200.345, 1200.356, 1201.23, 1201.231, 1201.233
1201.24, 1201.242, 1201.252, 1201.262, 1201.272
1201.282, 1201.292, 1201.294, 1201.303, 1201.305
1201.306, 1201.309, 1201.316
qmpy=
$3.962,3.78,3.719,3.749,3.871$
$3.962,4.023,4.054,4.084,4.084$
$4.115,4.115,7.59,7.468,7.468$
$7.407,7.224,7.071,6.95,6.828$
6.736, 6.645, 6.614, 6.584, 6.553
6.523, 6.523, 6.066, 5.913, 5.852
$5.852,5.791,5.73,5.73,5.669$
$5.669,5.7,5.73,5.73,7.193$
$6.736,6.706,6.645,6.462,6.309$
$6.157,6.005,5.883,5.791,5.73$
$5.7,1.28,2.377,4.054,5.791$
$6.066,6.828,7.62,8.352,9.144$
9.632, 10.15, 10.546, 10.851, 11.461
$11.796,12.131,10.119,8.809,6.675$
$6.035,7.193,7.742,8.748,9.144$
10.15, 11.186, 12.101, 11.887, 9.906
8.717, 8.138, 6.035, 6.98, 8.413
9.937, 11.064, 11.461, 12.284, 9.54
$4.42,1.463,0.366$
$\mathrm{nsp}=1$
p2=
2250.99, 2250.99, 2250.99, 2250.99, 2250.99
2250.99, 2250.99, 2250.99, 2250.99, 2250.99
2250.99, 2250.99, 2250.99, 2250.99, 2250.99
2250.99, 2250.99, 2250.99, 2250.99, 2250.99
2250.99, 2250.99, 2250.99, 2250.99, 2250.99
2250.99, 2250.99, 2250.99, 2250.99, 2250.99
2250.99, 2250.99, 2250.99, 2250.99, 2250.99
2250.99, 2250.99, 2250.99, 2250.99, 2250.99
2250.99, 2250.99, 2250.99, 2250.99, 2250.99
2250.99, 2250.99, 2250.99, 2250.99, 2250.99
2250.99, 2219.08, 2219.08, 2219.08, 2219.08
2219.08, 2219.08, 2219.08, 2219.08, 2219.08
2219.08, 2219.08, 2219.08, 2219.08, 2219.08
2219.08, 2219.08, 2219.08, 2219.08, 2219.08
2219.08, 2219.08, 2219.08, 2219.08, 2219.08
2219.08, 2219.08, 2219.08, 2219.08, 2219.08
$2219.08,2219.08,2219.08,2219.08,2219.08$
2219.08, 2219.08, 2219.08, 2219.08, 2219.08
$2219.08,2219.08,2219.08$
tw=

```
549.9, 549.9, 549.9, 549.9, 549.9
549.9, 549.9, 549.9, 549.9, 549.9
549.9, 549.9, 549.9, 549.9, 549.9
549.9, 549.9, 549.9, 549.9, 549.9
549.9, 549.9, 549.9, 549.9, 549.9
549.9, 549.9, 549.9, 549.9, 549.9
549.9, 549.9, 549.9, 549.9, 549.9
549.9, 549.9, 549.9, 549.9, 549.9
549.9, 549.9, 549.9, 549.9, 549.9
549.9, 549.9, 549.9, 549.9, 549.9
549.9, 638.6, 638.6, 638.6, 638.6
638.6, 638.6, 638.6, 638.6, 638.6
638.6, 638.6, 638.6, 638.6, 638.6
638.6, 638.6, 638.6, 638.6, 638.6
638.6, 638.6, 638.6, 638.6, 638.6
638.6, 638.6, 638.6, 638.6, 638.6
638.6, 638.6, 638.6, 638.6, 638.6
638.6, 638.6, 638.6, 638.6, 638.6
638.6, 638.6, 638.6
go=
2610000, 2610000, 2610000, 2610000, 2610000
2610000, 2610000, 2610000, 2610000, 2610000
2610000, 2610000, 2610000, 2610000, 2610000
2610000, 2610000, 2610000, 2610000, 2610000
2610000, 2610000, 2610000, 2610000, 2610000
2610000, 2610000, 2610000, 2610000, 2610000
2610000, 2610000, 2610000, 2610000, 2610000
2610000, 2610000, 2610000, 2610000, 2610000
2610000, 2610000, 2610000, 2610000, 2610000
2610000, 2610000, 2610000, 2610000, 2610000
2610000, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0
iq=0, fa=1
x(1)=
0, 0.24196, 0.48392, 0.72589, 0.96785
qf(1)=
1.009, 0.997, 0.983, 1.001, 1.01
x(6)=
0,0.24196,0.48392, 0.72589, 0.96785
qf(6)=
0.983, 1.031, 1.059, 0.995, 0.933
jn=5,5
jst=
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
```

| 1, | 1, | 1, | 1, | 1 |
| :--- | :--- | :--- | :--- | :--- |
| 1, | 1, | 1, | 1, | 1 |
| 1, | 1, | 1, | 1, | 1 |
| 1, | 2, | 2, | 2, | 2 |
| 2, | 2, | 2, | 2 |  |
| 2, | 2, | 2, | 2 |  |
| 2, | 2, | 2, | 2 |  |
| 2, | 2, | 2, | 2, | 2 |
| 2, | 2, | 2, | 2, | 2 |
| 2, | 2, | 2, | 2 |  |
| 2, | 2, | 2, | 2 |  |
| 2, | 2, |  |  |  |
| \$end |  |  |  |  |

## AN8 Cladding Hoop Strain Case

* GOESINS:

FILEO5='nullfile', STATUS='UNKNOWN', FORM='FORMATTED', CARRIAGE CONTROL='NONE'
$\star$

* GOESOUTS:

FILE06='AN8.out',
STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='AN8.plot',
STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'

RISO-3 Rod AN8 tests on the segment CB10
\$frpen
im=68, nr=17, ngasr=45, na=9
\$end
\$frpcon
dco=0.4256, thkcld=0.03049, thkgap=0.00409, totl=1.77756, cpl=2.4
$\mathrm{dspg}=0.3564$, $\mathrm{dspg}=0.0394$, $\mathrm{vs}=10$
hplt=0.272, rc=0, hdish=0.0113, dishsd=0.0892
enrch=2.95, imox=0, comp=0
fotmtl=2, gadoln=0, ppmh2o=0, ppmn2=0
den $=93.74$, deng=0, roughf=0.0000787, rsntr=20, tsint=2911
icm=4, cldwks=0.5, roughc=0.0000197, catexf=0.05, chorg=10
fgpav=335.04, idxgas=1
iplant $=-2$, pitch=0.5512, icor=0, crdt=0, crdtr=0, flux=10*221000000000000000
crephr=1, sgapf=31, slim=0.05, qend=0.3
jdlpr=0, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
ProblemTime=
4.375, 14.583, 29.167, 58.333, 87.5
116.667, 145.833, 175, 204.167, 233.333
$262.5,273.5,277.875,288.083,302.667$
331.833, 361, 390.167, 419.333, 448.5
477.667, 506.833, 536, 565.167, 594.333
623.5, 636.583, 640.958, 651.167, 665.75
694.917, 724.083, 753.25, 782.375, 811.542
840.708, 869.875, 899.042, 917.375, 921.75
931.958, $946.583,975.75,1004.958,1034.125$
1063.333, 1092.542, 1121.708, 1150.917, 1180.083
1198.25, 1198.32, 1198.341, 1198.346, 1198.356
1198.386, 1198.392, 1198.401, 1198.409, 1198.418
1198.679, 1198.683, 1198.687, 1198.856, 1198.857
1198.858, 1198.859, 1198.866
qmpy=

```
4.907, 4.633, 4.542, 4.572, 4.694
4.755,4.785,4.785,4.755,4.724
4.724, 4.724, 7.224, 7.041, 7.01
6.98,6.858, 6.736, 6.645, 6.553
6.462, 6.37, 6.34, 6.309, 6.309
6.248, 6.248, 6.309, 6.127, 6.066
6.005, 5.944, 5.883, 5.852, 5.822
5.791, 5.822, 5.822, 5.822, 6.889
6.462, 6.431, 6.34, 6.127, 5.944
5.761, 5.608, 5.486, 5.365, 5.304
5.304, 0.555, 2.411, 2.893, 3.572
4.377, 4.84, 5.24, 5.7, 6.102
6.654, 7.763, 8.626, 9.178, 7.361
3.572, 1.695, 0.521
nsp=1
p2=
2250.99, 2250.99, 2250.99, 2250.99, 2250.99
2250.99, 2250.99, 2250.99, 2250.99, 2250.99
2250.99, 2250.99, 2250.99, 2250.99, 2250.99
2250.99, 2250.99, 2250.99, 2250.99, 2250.99
2250.99, 2250.99, 2250.99, 2250.99, 2250.99
2250.99, 2250.99, 2250.99, 2250.99, 2250.99
2250.99, 2250.99, 2250.99, 2250.99, 2250.99
2250.99, 2250.99, 2250.99, 2250.99, 2250.99
2250.99, 2250.99, 2250.99, 2250.99, 2250.99
2250.99, 2250.99, 2250.99, 2250.99, 2250.99
2250.99, 2219.08, 2219.08, 2219.08, 2219.08
2219.08, 2219.08, 2219.08, 2219.08, 2219.08
2219.08, 2219.08, 2219.08, 2219.08, 2219.08
2219.08, 2219.08, 2219.08
tw=
549.9, 549.9, 549.9, 549.9, 549.9
549.9, 549.9, 549.9, 549.9, 549.9
549.9, 549.9, 549.9, 549.9, 549.9
549.9, 549.9, 549.9, 549.9, 549.9
549.9, 549.9, 549.9, 549.9, 549.9
549.9, 549.9, 549.9, 549.9, 549.9
549.9, 549.9, 549.9, 549.9, 549.9
549.9, 549.9, 549.9, 549.9, 549.9
549.9, 549.9, 549.9, 549.9, 549.9
549.9, 549.9, 549.9, 549.9, 549.9
549.9, 638.6, 638.6, 638.6, 638.6
638.6, 638.6, 638.6, 638.6, 638.6
638.6, 638.6, 638.6, 638.6, 638.6
638.6, 638.6, 638.6
go=
2610000, 2610000, 2610000, 2610000, 2610000
2610000, 2610000, 2610000, 2610000, 2610000
2610000, 2610000, 2610000, 2610000, 2610000
2610000, 2610000, 2610000, 2610000, 2610000
2610000, 2610000, 2610000, 2610000, 2610000
2610000, 2610000, 2610000, 2610000, 2610000
2610000, 2610000, 2610000, 2610000, 2610000
2610000, 2610000, 2610000, 2610000, 2610000
2610000, 2610000, 2610000, 2610000, 2610000
2610000, 2610000, 2610000, 2610000, 2610000
2610000, 0, 0, 0, 0
```

```
 0, 0, 0, 0, 0
 0, 0, 0, 0, 0
 0, 0, 0
 iq=0, fa=1
 x(1)=
 0, 0.19751, 0.39501, 0.59252, 0.79003
 0.98753,1.18504, 1.38255, 1.58005, 1.77756
 qf(1)=
 1.012, 1.004, 1.004, 0.995, 0.974
 0.996, 1.007, 1.007, 0.999, 1.003
 x(11)=
 0, 0.19751, 0.39501, 0.59252, 0.79003
 0.98753,1.18504, 1.38255, 1.58005, 1.77756
 qf(11)=
 1.53105280637662, 1.56758551976088, 1.4546662238459, 1.43141813351046,
1.17568913982066
 0.956492859515111, 0.743938890733975, 0.551311856526071, 0.371969445366988,
0.215875124543341
 jn=10,10
 jst=
 1, 1, 1, 1, 1
 1, 1, 1, 1, 1
 1, 1, 1, 1, 1
 1, 1, 1, 1, 1
 1, 1, 1, 1, 1
 1, 1, 1, 1, 1
 1, 1, 1, 1, 1
 1, 1, 1, 1, 1
 1, 1, 1, 1, 1
 1, 1, 1, 1, 1
 1, 2, 2, 2, 2
 2, 2, 2, 2, 2
 2, 2, 2, 2, 2
 2, 2, 2
 $end
```


## A. 43 B\&W Rods Ramped at Studsvik

Three well-characterized 1.10 m long rodlets that had been irradiated to burnups slightly greater than $62 \mathrm{GWd} / \mathrm{MTU}$ in ANO-1 were ramp tested in the Studsvik R2 experimental reactor (Wesley et al. 1994). Peak power levels of $39.5,42.0$, and $44.0 \mathrm{~kW} / \mathrm{m}$ and a 12 hour hold time were selected for these tests. No failures were experienced during testing and no incipient cracks were detected in the cladding during the post-ramp examinations. The FGR after the ramp was measured. Two of these rods (rods 1 and 3) were used in the assessment of the FRAPCON-3.4 $\mathrm{UO}_{2}$ FGR predictions.

The input files for these two rods are shown below.

## B\&W Rod 1 Ramped at Studsvik

```
* GOESINS:
FILE05='nullfile', STATUS='scratch', FORM='FORMATTED',
 CARRIAGE CONTROL='LIST'
*
* GOESOUTS:
FILE06='outBWstudR1.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='plotBWstudr1.out', STATUS='UNKNOWN', FORM='FORMATTED'
/**
B&W Rod 14334L (C13) Rod 1
 $frpcn
 im=37, na=10, nr = 25,
 mechan = 2,ngasr = 45
 $end
 $frpcon
 cpl = 8.55, crdt = 1., crdtr = 0.0, dco = 0.430,
 thkcld = 0.030, thkgap = 0.0037,
 den = 95.0, dishsd = 0.05, dspg = 0.33,
 dspgw = 0.055, enrch = 2.95, fgpav = 400.0, hdish = 0.0135,
 hplt = 0.418, icm = 4,pitch = 0.56,
 icor = 0, idxgas = 1, iplant =-2, iq = 0, jdlpr = 0,fa = 1.0,
 jn = 5,9, crephr = 1.0,
 totl = 2.90, roughc = 2e-5, roughf = 3e-5, vs = 8.0,
 nunits = 1, rsntr = 150.,nsp=0, nplot = 1,
 flux(1) = 11*0.26e17, p2(1) = 2200.0, tw(1) = 555.,
 go(1) = 3.e6,
 jst = 31*1,6*2,
 qf(1) = 1.00,1.00,1.00,1.00,1.00,
 x(1) = 0.000,0.725,1.450,2.175,2.900,
 qf(6) = 0.36,1.41,1.75,1.79,1.71,1.61,1.25,0.46,0.05,
 x(6) = 0.00,0.57,0.90,1.07,1.23,1.48,1.64,2.21,2.90,
 ProblemTime=
 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
 52.9, 150.0, 248.3, 358.9, 482.0, 544.7,
 561.8, 677.5, 777.9, 913.6, 966.5, 995.6,1016.9,
 1084.9,1182.0,1354.2,1471.9,1567.1,1604.9,1770.1,
 1872.2,2032.5,2083.3,2138.5, 2138.75, 2139.0, 2140.0,
 2140.5, 2140.75, 2141.0
 qmpy =
 1., 2., 3., 4., 5., 6., 7.,
 7.60, 8.01, 7.60, 6.21, 6.16, 4.93, 7.36,
 7.41, 7.42, 6.58, 6.16, 5.55, 5.52, 5.44, 5.49,
 5.16, 4.57, 4.06, 4.12, 3.23, 3.40, 3.25, 3.22,
```

```
 2.75, 2.73, 3.6, 4.61, 5.6, 6.74, 6.74
slim = .05, nplot =1,
$end
```


## B\&W Rod 3 Ramped at Studsvik

```
* GOESINS:
FILE05='nullfile', STATUS='scratch', FORM='FORMATTED',
 CARRIAGE CONTROL='LIST'
*
* GOESOUTS:
FILE06='outBWstudR3.n', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
/**
B&W Rod 14334L (N3) Rod 3
 $frpcn
 im=30, na=15,
 mechan = 2,ngasr = 45
 $end
 $frpcon
 cpl = 8.55, crdt = 1., crdtr = 0.0, dco = 0.430,
 thkcld = 0.030, thkgap = 0.0037,
 den = 95.0, dishsd = 0.05, dspg = 0.33,
 dspgw = 0.055, enrch = 2.95, fgpav = 400.0, hdish = 0.0135,
 hplt = 0.418, icm = 4,pitch = 0.56,crephr=1.0
 icor = 0, idxgas = 1, iplant =-2, iq = 0, jdlpr = 0,fa = 1.0,
 jn = 5,9,
 totl = 2.90, roughc = 2e-5, roughf = 3e-5, vs = 8.0,
 nunits = 1, rsntr = 150.,nsp=0,
 flux(1) = 16*0.26e17, p2(1) = 2200.0, tw(1) = 555.,
 go(1) = 3.e6,
 jst = 24*1, 6*2,
 qf(1) = 1.00,1.00,1.00,1.00,1.00,
 x(1) = 0.000,0.725,1.450,2.175,2.900,
 qf(6) = 0.36,1.41,1.75,1.79,1.71,1.61,1.25,0.46,0.05,
 x(6) = 0.00,0.57,0.90,1.07,1.23,1.48,1.64,2.21,2.90,
 ProblemTime= 52.9, 150.0, 248.3, 358.9, 482.0, 544.7,
 561.8, 677.5, 777.9, 913.6, 966.5, 995.6,1016.9,
 1084.9,1182.0,1354.2,1471.9,1567.1,1604.9,1770.1,
 1872.2,2032.5,2083.3,2138.5,2140.30,2140.35,2140.4,
 2140.45, 2140.5, 2140.75, 2141.0
 qmpy = 8.23, 7.64, 6.89, 6.27, 7.39, 5.13, 7.16,
 7.35, 7.23, 6.83, 6.12, 6.20, 5.93, 4.97, 5.39,
 5.17, 4.52, 4.05, 4.09, 3.34, 3.18, 3.32, 3.37,
 2.69, 2.73, 3.50, 4.61, 5.50, 6.50, 7.52, 7.52
 slim = .05,
 $end
```


## A. 44 Regate Rod

This Regate experiment (Struzik 2004) deals with the study of FGR and fuel swelling during power transient at medium burnup. The rod was base-irradiated in the Gravelines-5 PWR and then re-irradiated in the test reactor SILOE in Grenoble, France. Since the rod was initially a segmented rod, the refabrication process prior to loading in the test is minor. In particular, the rod was not purged of its fission gases following refabrication.

The segmented rod consisted of $\mathrm{UO}_{2}$ fuel with 4.5 percent enrichment. It was irradiated up to $47 \mathrm{GWd} /$ MTU. In the SILOE reactor, the rod was given a conditioning power step of $195 \mathrm{~W} / \mathrm{cm}$ for 48 hours and then was ramped at $10 \mathrm{~W} / \mathrm{cm} / \mathrm{min}$ and held at $385 \mathrm{~W} / \mathrm{cm}$ for 90 minutes. This rod is particularly valuable for examining FGR for power ramps of short time duration because the other power ramped $\mathrm{UO}_{2}$ rods used for FRAPCON-3.4 assessment were for hold times of 4) hours or greater.

This rod was used as part of the FRAPCON-3.4 $\mathrm{UO}_{2}$ FGR assessment. The input file used for the $\mathrm{UO}_{2}$ FGR assessment is shown below.

```
Regate Rod
* GOESINS:
FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
 CARRIAGE CONTROL='NONE'
*
* GOESOUTS:
FILE06='REGATE.out',
 STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='regate.plot',
 STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'
/***REGATE
L10
 $frpcn
 im=65, nr=17, ngasr=45, na=7
 $end
 $frpcon
 dco=0.374, thkcld=0.02244, thkgap=0.00331, totl=1.43045, cpl=1.8504
 dspg=0.319, dspgw=0.04, vs=4
 hplt=0.5512, rc=0, hdish=0.0126, dishsd=0.0431
 enrch=4.5, imox=0, comp=0
 fotmtl=2, gadoln=0, ppmh2o=0, ppmn2=0
 den=94.75, deng=0.57, roughf=0.000025, rsntr=74, tsint=2911
 icm=4, cldwks=0.5, roughc=0.0000197, catexf=0.05, chorg=10
 fgpav=377.1, idxgas=1
iplant=-2, pitch=0.496, icor=0, crdt=0, crdtr=0, flux=8*221000000000000000
 crephr=10, sgapf=31, slim=0.05, qend=0.3
 jdlpr=1, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
 ProblemTime=
 0.5, 21.18, 53.8, 83.45, 116.39
 147.97, 176.44, 204.92, 240.66, 271.29
 274.29, 283.13, 316.4, 346.61, 375.68
 407.7, 439.54, 470.84, 503.33, 560.24
 588.37, 590.57, 600.54, 632.65, 659.29
 684.85, 714.43, 742.4, 768.6, 796.83
 823.73, 850.63, 857.97, 868.32, 897.7
 926.16, 957.52, 1039.06, 1067.15, 1099.1
```

```
1135.84, 1138.97, 1139.03, 1139.04, 1139.73
1139.74, 1145.75, 1145.753, 1145.76, 1145.77
1145.78, 1145.79, 1145.793, 1147.78, 1147.8
1147.86, 1147.87, 1150.86, 1150.862, 1152.49
1152.5, 1152.51, 1152.511, 1152.53, 1152.531
qmpy=
1.524, 3.444, 6.706, 6.584, 6.462
6.248, 6.248, 6.096, 6.127, 5.791
5.791, 4.054, 7.864, 7.712, 7.529
7.529, 7.468, 7.254, 7.163, 6.614
5.639, 5.029, 3.444, 6.675, 6.584
6.431, 6.309, 6.37, 6.309, 6.37
6.37, 6.188,6.188, 3.109, 6.096
6.096, 5.944, 5.791, 5.73, 5.639
5.669, 5.669, 2.399, 3.277, 4.176
2.088, 4.176, 2.088, 1.158, 2.286
2.481, 2.649, 4.033, 5.416, 8.032
10.732, 8.032, 5.416, 3.837, 2.344
2.173, 2.003, 1.835, 1.664, 0.82
nsp=1
p2=
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 1885.2, 1885.2, 1885.2
1885.2, 1885.2, 1885.2, 1885.2, 1885.2
1885.2, 1885.2, 1885.2, 1885.2, 1885.2
1885.2, 1885.2, 1885.2, 1885.2, 1885.2
1885.2, 1885.2, 1885.2, 1885.2, 1885.2
tw=
608, 608, 608, 608, 608
608, 608, 608, 608, 608
608, 608, 608, 608, 608
608, 608, 608, 608, 608
608, 608, 608, 608, 608
608, 608, 608, 608, 608
608, 608, 608, 608, 608
608, 608, 608, 608, 608
608, 608, 368.6, 446, 514.4
338, 514.4, 338, 233.6, 356
374, 392, 505.4, 588.2, 636.8
640.4, 636.8, 588.2, 492.8, 361.4
345.2, 329, 311, 293, 194
go=
2653331, 2653331, 2653331, 2653331, 2653331
2653331, 2653331, 2653331, 2653331, 2653331
2653331, 2653331, 2653331, 2653331, 2653331
2653331, 2653331, 2653331, 2653331, 2653331
2653331, 2653331, 2653331, 2653331, 2653331
2653331, 2653331, 2653331, 2653331, 2653331
2653331, 2653331, 2653331, 2653331, 2653331
2653331, 2653331, 2653331, 2653331, 2653331
```

```
2653331, 2653331, 2653331, 2653331, 2653331
2653331, 2653331, 2653331, 2653331, 2653331
2653331, 2653331, 2653331, 2653331, 2653331
2653331, 2653331, 2653331, 2653331, 2653331
2653331, 2653331, 2653331, 2653331, 2653331
iq=0, fa=1
x(1)=
0,0.20433, 0.40866, 0.61299, 0.81729
1.02162, 1.22595, 1.43045
qf(1)=
1, 1, 1, 1, 1
1, 1, 1
x(9)=
0, 0.20433, 0.40866, 0.61299, 0.81729
1.02162, 1.22595, 1.43045
qf(9)=
0.727, 0.854, 1.017, 1.068, 1.079
1.085, 1.037, 0.952
jn=8,8
jst=
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2, 2, 2
$end
```


## A. 45 Beznau-1 M501 Rods

Two MOX rods were irradiated for three cycles in the Beznau-1 PWR up to a rod-average burnup between 34 and $37 \mathrm{GWd} /$ MTM. The MOX fuel was fabricated using SBR that results in a relatively homogenous distribution of the $\mathrm{PuO}_{2}$. One of these rods had a high plutonium enrichment ( $5.54 \mathrm{wt} \%$ ) and one had a medium plutonium enrichment ( $3.72 \mathrm{wt} \%$ ). After this, eight rodlets were refabricated from these two rods. Rodlets HR-1 to HR-4 (White et al. 2001; Cook et al. 2000, 2003, 2004) were refabricated from the high-enrichment rod, number 4463, and rodlets MR-1 to MR-4 (White et al. 2001; Cook et al. $2000,2003,2004$ ) were refabricated from the medium enrichment rod, number 7612. These rodlets were ramp tested in the Petten high flux reactor. The ramp consisted of a 60 hour hold time at a preconditioning level followed by a ramp to a higher level with a hold of 12 hours for all the rodlets except MR-4, which was only held at the higher level for 20 minutes. It should be noted that the preconditioning and ramp power levels listed in the documents are the peak node powers. These values have been divided by the peak-to-average ratio to determine the rod-average power levels for these ramp tests.

These eight rodlets were used to assess the FRAPCON-3.4 MOX FGR predictions. The input files used for the MOX temperature and FGR assessments are shown below.

## M501 Rod HR1

```
* GOESINS:
FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
 CARRIAGE CONTROL='NONE'
*
* GOESOUTS:
FILE06='M501-HR1.out',
 STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='M501-HR1.plot',
 STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'
/**M501
ramp tested rodlet HR-1
 $frpcn
 im=48, nr=17, ngasr=45, na=10
 $end
 $frpcon
 dco=0.4398, thkcld=0.02598, thkgap=0.00335, totl=0.98425, cpl=0.6732
 dspg=0.374, dspgw=0.05, vs=2
 hplt=0.6, rc=0, hdish=0.0113, dishsd=0.0969
 enrch=0.3, imox=1, comp=5.54
 fotmtl=2, gadoln=0, ppmh2o=0, ppmn2=0
 den=95, deng=0, roughf=0.0000787, rsntr=100, tsint=2911
 icm=4, cldwks=0.5, roughc=0.0000197, catexf=0.05, chorg=10
 fgpav=340.84, idxgas=1
iplant=-2, pitch=0.5799, icor=0, crdt=0, crdtr=0, flux=11*221000000000000000
 crephr=10, sgapf=31, slim=0.05, qend=0.3
 jdlpr=1, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
 ProblemTime=
 36.9, 75.2, 110.7, 144.9, 181.8
 215.9, 252.8, 291.1, 311.6, 319.8
 330.7, 363.5, 399.8, 436, 474.2
 509.8, 545.3, 583.8, 620.5, 657.4
 673.8, 684.7, 694.3, 740.8, 774.9
 810.5, 833.7, 882.9, 918.4, 953.9
 990.9, 1026.4, 1072.9, 1089.3, 1123.4
```

```
1133, 1141.6, 1142.1, 1142.6, 1143.1
1143.6, 1144.1, 1144.6, 1145.1, 1145.6
1146.1, 1146.6, 1147.1
qmpy=
6.569, 6.508, 6.514, 6.517, 6.526
6.544, 6.562, 6.581, 6.593, 6.599
6.633, 7.041, 7.254, 7.254, 7.285
7.315, 7.331, 7.346, 7.376, 7.391
7.391, 7.391, 7.407, 7.163, 6.828
6.919, 6.98, 7.01, 7.01, 7.041
7.071, 7.071, 7.102, 7.132, 7.132
7.102, 7.102, 7.09, 7.09, 7.09
7.09, 7.09, 7.09, 7.09, 7.09
7.09, 7.09, 11.625
nsp=1
p2=
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08
tw=
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 632.1, 632.1, 632.1
632.1, 632.1, 632.1, 632.1, 632.1
632.1, 632.1, 644
go=
2650000, 2650000, 2650000, 2650000, 2650000
2650000, 2650000, 2650000, 2650000, 2650000
2650000, 2650000, 2650000, 2650000, 2650000
2650000, 2650000, 2650000, 2650000, 2650000
2650000, 2650000, 2650000, 2650000, 2650000
2650000, 2650000, 2650000, 2650000, 2650000
2650000, 2650000, 2650000, 2650000, 2650000
2650000, 2650000, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0
iq=0, fa=1
x(1)=
0, 0.09843, 0.19685, 0.29528, 0.3937
0.49213, 0.59055, 0.68898, 0.7874, 0.88583
0.98425
qf(1)=
1, 1, 1, 1, 1
1, 1, 1, 1, 1
 1
```

```
x(12) =
0, 0.04921, 0.14764, 0.24606, 0.34449
0.44291, 0.54134, 0.63976, 0.73819, 0.83661
0.93504, 0.98425
qf(12)=
29.875, 31.27, 34.06, 36.81, 39.03
40.42, 41, 40.92, 40.26, 39.36
38.29, 37.755
jn=11,12
jst=
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2
$end
$frpmox
enrpu39=70, enrpu40=25, enrpu41=5, enrpu42=0
$end
```


## M501 Rod HR2

* GOESINS:

FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED', CARRIAGE CONTROL='NONE'
$\star$

* GOESOUTS:

FILE06='M501-HR2. out', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='M501-HR2.plot', STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'

ramp tested rodlet HR-2

```
 $frpcn
```

    im=48, nr=17, ngasr=45, na=9
    \$end
    \$frpcon
    \(\mathrm{dco}=0.4398\), thkcld=0.02598, thkgap=0.00335, totl=0.98425, cpl=0.689
    \(\mathrm{dspg}=0.374, \mathrm{dspgw}=0.05, \mathrm{vs}=2\)
    hplt=0.6, rc=0, hdish=0.0113, dishsd=0.0969
    enrch=0.3, imox=1, comp=5.54
    fotmtl=2, gadoln=0, ppmh2o=0, ppmn \(2=0\)
    den \(=95\), deng=0, roughf=0.0000787, rsntr=100, tsint=2911
    icm=4, cldwks=0.5, roughc=0.0000197, catexf=0.05, chorg=10
    fgpav=335.04, idxgas=1
    iplant $=-2$, pitch=0.5799, icor=0, crdt=0, crdtr=0, flux=10*22100000000000000
crephr=10, sgapf=31, slim=0.05, qend=0.3
jdlpr=1, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
ProblemTime=
36.9, 75.2, 110.7, 144.9, 181.8
215.9, 252.8, 291.1, 311.6, 319.8
$330.7,363.5,399.8,436,474.2$
$509.8,545.3,583.8,620.5,657.4$

```
673.8, 684.7, 694.3, 740.8, 774.9
810.5, 833.7, 882.9, 918.4, 953.9
990.9, 1026.4, 1072.9, 1089.3, 1123.4
1133, 1141.6, 1142.1, 1142.6, 1143.1
1143.6, 1144.1, 1144.6, 1145.1, 1145.6
1146.1, 1146.6, 1147.1
qmpy=
6.569, 6.508, 6.514, 6.517, 6.526
6.544, 6.562, 6.581, 6.593, 6.599
6.633, 7.041, 7.254, 7.254, 7.285
7.315, 7.331, 7.346, 7.376, 7.391
7.391, 7.391, 7.407, 7.163, 6.828
6.919, 6.98, 7.01, 7.01, 7.041
7.071, 7.071, 7.102, 7.132, 7.132
7.102, 7.102, 8.382, 8.382, 8.382
8.382, 8.382, 8.382, 8.382, 8.382
8.382, 8.382, 10.872
nsp=1
p2=
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08
tw=
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 644, 644, 644
644, 644, 644, 644, 644
644, 644, 644
go=
2650000, 2650000, 2650000, 2650000, 2650000
2650000, 2650000, 2650000, 2650000, 2650000
2650000, 2650000, 2650000, 2650000, 2650000
2650000, 2650000, 2650000, 2650000, 2650000
2650000, 2650000, 2650000, 2650000, 2650000
2650000, 2650000, 2650000, 2650000, 2650000
2650000, 2650000, 2650000, 2650000, 2650000
2650000, 2650000, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0
iq=0, fa=1
x(1)=
0, 0.09843, 0.19685, 0.29528, 0.3937
0.49213, 0.59055, 0.68898, 0.7874, 0.88583
0.98425
qf(1)=
```

```
 1, 1, 1, 1, 1
 1, 1, 1, 1, 1
 1
 x(12) =
 0, 0.04921, 0.14764, 0.24606, 0.34449
 0.44291, 0.54134, 0.63976, 0.73819, 0.83661
 0.93504,0.98425
 qf(12)=
 26.7, 28.02, 30.66, 33.46, 35.87
 37.54, 38.51, 38.86, 38.7, 38.08
 36.99, 36.445
 jn=11,12
 jst=
 1, 1, 1, 1, 1
 1, 1, 1, 1, 1
 1, 1, 1, 1, 1
 1, 1, 1, 1, 1
 1, 1, 1, 1, 1
 1, 1, 1, 1, 1
 1, 1, 1, 1, 1
 1, 1, 2, 2, 2
 2, 2, 2, 2, 2
 2, 2, 2
 $end
 $frpmox
 enrpu39=70, enrpu40=25, enrpu41=5, enrpu42=0
 $end
```


## M501 Rod HR3

* GOESINS:

```
FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
 CARRIAGE CONTROL='NONE'
*
* GOESOUTS:
FILE06='M501-HR3.Out',
 STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='M501-HR3.plot',
 STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'
/**M501
ramp tested rodlet HR-3
 $frpcn
 im=48, nr=17, ngasr=45, na=9
 $end
 $frpcon
 dco=0.4398, thkcld=0.02598, thkgap=0.00335, totl=0.98425, cpl=0.6772
 dspg=0.374, dspgw=0.05, vs=2
 hplt=0.6, rc=0, hdish=0.0113, dishsd=0.0969
 enrch=0.3, imox=1, comp=5.54
 fotmtl=2, gadoln=0, ppmh2o=0, ppmn2=0
 den=95, deng=0, roughf=0.0000787, rsntr=100, tsint=2911
 icm=4, cldwks=0.5, roughc=0.0000197, catexf=0.05, chorg=10
 fgpav=336.49, idxgas=1
iplant=-2, pitch=0.5799, icor=0, crdt=0, crdtr=0, flux=10*221000000000000000
 crephr=1, sgapf=31, slim=0.05, qend=0.3
 jdlpr=1, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
 ProblemTime=
 36.9, 75.2, 110.7, 144.9, 181.8
```

```
215.9, 252.8, 291.1, 311.6, 319.8
330.7, 363.5, 399.8, 436, 474.2
509.8, 545.3, 583.8, 620.5, 657.4
673.8, 684.7, 694.3, 740.8, 774.9
810.5, 833.7, 882.9, 918.4, 953.9
990.9, 1026.4, 1072.9, 1089.3, 1123.4
1133, 1141.6, 1142.1, 1142.6, 1143.1
1143.6, 1144.1, 1144.6, 1145.1, 1145.6
1146.1, 1146.6, 1147.1
qmpy=
6.569, 6.508, 6.514, 6.517, 6.526
6.544, 6.562, 6.581, 6.593, 6.599
6.633, 7.041, 7.254, 7.254, 7.285
7.315, 7.331, 7.346, 7.376, 7.391
7.391, 7.391, 7.407, 7.163, 6.828
6.919, 6.98, 7.01, 7.01, 7.041
7.071, 7.071, 7.102, 7.132, 7.132
7.102, 7.102, 5.855, 5.855, 5.855
5.855,5.855,5.855, 5.855, 5.855
5.855, 5.855, 14.073
nsp=1
p2=
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08
tw=
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 578.3, 578.3, 578.3
578.3, 578.3, 578.3, 578.3, 578.3
578.3, 578.3, 644
go=
2650000, 2650000, 2650000, 2650000, 2650000
2650000, 2650000, 2650000, 2650000, 2650000
2650000, 2650000, 2650000, 2650000, 2650000
2650000, 2650000, 2650000, 2650000, 2650000
2650000, 2650000, 2650000, 2650000, 2650000
2650000, 2650000, 2650000, 2650000, 2650000
2650000, 2650000, 2650000, 2650000, 2650000
2650000, 2650000, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0
iq=0, fa=1
x(1)=
0, 0.09843, 0.19685, 0.29528, 0.3937
```

```
0.49213,0.59055,0.68898, 0.7874, 0.88583
0.98425
qf(1)=
1, 1, 1, 1, 1
1, 1, 1, 1, 1
 1
x(12)=
0, 0.04921, 0.14764, 0.24606, 0.34449
0.44291, 0.54134, 0.63976, 0.73819, 0.83661
0.93504, 0.98425
qf(12)=
35.3, 36.94, 40.22, 43.61, 46.53
48.75, 50.07, 50.47, 50.02, 48.65
46.43, 45.32
jn=11,12
jst=
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2
$end
$frpmox
enrpu39=70, enrpu40=25, enrpu41=5, enrpu42=0
$end
```


## M501 Rod HR4

* GOESINS:

FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED', CARRIAGE CONTROL='NONE'
*

* GOESOUTS:

FILE06='M501-HR4. out', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='M501-HR4.plot', STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'

M501 ramp tested rodlet HR-4
\$frpen
im=48, nr=17, ngasr=45, na=9
\$end
\$frpcon
$\mathrm{dco}=0.4398$, thkcld=0.02598, thkgap=0.00335, totl=0.98425, cpl=0.6732
$\mathrm{dspg}=0.374, \mathrm{dspgw}=0.05, \mathrm{vs}=2$
hplt=0.6, rc=0, hdish=0.0113, dishsd=0.0969
enrch=0.3, imox=1, comp=5.54
fotmtl=2, gadoln=0, ppmh $20=0, \mathrm{ppmn} 2=0$
den $=95$, deng=0, roughf $=0.0000787$, rsntr=100, tsint=2911
icm=4, cldwks=0.5, roughc=0.0000197, catexf=0.05, chorg=10
fgpav=333.59, idxgas=1
iplant $=-2$, pitch=0.5799, icor=0, crdt=0, crdtr=0, flux $=10 * 22100000000000000$
crephr=1, sgapf=31, slim=0.05, qend=0.3

```
jdlpr=1, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
ProblemTime=
36.9, 75.2, 110.7, 144.9, 181.8
215.9, 252.8, 291.1, 311.6, 319.8
330.7, 363.5, 399.8, 436, 474.2
509.8, 545.3, 583.8, 620.5, 657.4
673.8, 684.7, 694.3, 740.8, 774.9
810.5, 833.7, 882.9, 918.4, 953.9
990.9, 1026.4, 1072.9, 1089.3, 1123.4
1133, 1141.6, 1142.1, 1142.6, 1143.1
1143.6, 1144.1, 1144.6, 1145.1, 1145.6
1146.1, 1146.6, 1147.1
qmpy=
6.569, 6.508, 6.514, 6.517, 6.526
6.544, 6.562, 6.581, 6.593, 6.599
6.633, 7.041, 7.254, 7.254, 7.285
7.315, 7.331, 7.346, 7.376, 7.391
7.391, 7.391, 7.407, 7.163, 6.828
6.919, 6.98, 7.01, 7.01, 7.041
7.071, 7.071, 7.102, 7.132, 7.132
7.102, 7.102, 7.014, 7.014, 7.014
7.014, 7.014, 7.014, 7.014, 7.014
7.014, 7.014, 14.32
nsp=1
p2=
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08
tw=
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 629.4, 629.4, 629.4
629.4, 629.4, 629.4, 629.4, 629.4
629.4, 629.4,644
go=
2650000, 2650000, 2650000, 2650000, 2650000
2650000, 2650000, 2650000, 2650000, 2650000
2650000, 2650000, 2650000, 2650000, 2650000
2650000, 2650000, 2650000, 2650000, 2650000
2650000, 2650000, 2650000, 2650000, 2650000
2650000, 2650000, 2650000, 2650000, 2650000
2650000, 2650000, 2650000, 2650000, 2650000
2650000, 2650000, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0
```

```
iq=0, fa=1
x(1)=
0, 0.09843, 0.19685, 0.29528, 0.3937
0.49213, 0.59055, 0.68898, 0.7874, 0.88583
0.98425
qf(1)=
1, 1, 1, 1, 1
1, 1, 1, 1, 1
 1
x(12) =
0, 0.04921, 0.14764, 0.24606, 0.34449
0.44291, 0.54134, 0.63976, 0.73819, 0.83661
0.93504,0.98425
qf(12)=
35.605, 37.65, 41.74, 45.32, 48.13
50.02, 50.99, 51.04, 50.17, 48.54
46.24, 45.09
jn=11,12
jst=
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2
$end
$frpmox
enrpu39=70, enrpu40=25, enrpu41=5, enrpu42=0
$end
```


## M501 Rod MR1

* GOESINS:
FILEO5='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
CARRIAGE CONTROL='NONE'
* 
* GOESOUTS:
FILE06='M501-MR1. out',
STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='M501-MR1.plot',
STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'

M501 ramp tested rodlet MR-1
\$frpen
im=48, nr=17, ngasr=45, na=9
\$end
\$frpcon
dco=0.4398, thkcld=0.02598, thkgap=0.00335, totl=0.98425, cpl=0.6654
$\mathrm{dspg}=0.374, \mathrm{dspgw}=0.05, \mathrm{vs}=2$
hplt=0.6, rc=0, hdish=0.0113, dishsd=0.0969
enrch=0.3, imox=1, comp=3.72
fotmtl=2, gadoln=0, ppmh2o=0, ppmn2=0
den $=95$, deng $=0$, roughf $=0.0000787$, rsntr $=100$, tsint $=2911$
icm=4, cldwks=0.5, roughc=0.0000197, catexf=0.05, chorg=10

```
 fgpav=336.49, idxgas=1
iplant=-2, pitch=0.5799, icor=0, crdt=0, crdtr=0, flux=10*22100000000000000
 crephr=10, sgapf=31, slim=0.05, qend=0.3
 jdlpr=1, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
 ProblemTime=
 36.9, 75.2, 110.7, 144.9, 181.8
 215.9, 252.8, 291.1, 311.6, 319.8
 330.7, 363.5, 399.8, 436, 474.2
 509.8, 545.3, 583.8, 620.5, 657.4
 673.8, 684.7, 694.3, 740.8, 774.9
 810.5, 833.7, 882.9, 918.4, 953.9
 990.9, 1026.4, 1072.9, 1089.3, 1123.4
 1133, 1141.6, 1142.1, 1142.6, 1143.1
 1143.6, 1144.1, 1144.6, 1145.1, 1145.6
 1146.1, 1146.6, 1147.1
 qmpy=
 4.7, 4.682, 4.703, 4.731, 4.755
 4.788, 4.801, 4.825, 4.849, 4.859
 4.868, 5.98, 6.895, 6.895, 6.87
 6.867, 6.867, 6.867, 6.855, 6.855
 6.837, 6.828, 6.837, 6.907, 6.946
 6.937, 6.898, 6.898, 6.898, 6.757
 6.733,6.69,6.672, 6.648, 6.617
 6.59, 6.593, 5.618, 5.618, 5.618
 5.618, 5.618, 5.618, 5.618, 5.618
 5.618, 5.618, 11.622
 nsp=1
 p2=
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08
tw=
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 566.2, 566.2, 566.2
566.2, 566.2, 566.2, 566.2, 566.2
566.2, 566.2, 644
go=
2650000, 2650000, 2650000, 2650000, 2650000
2650000, 2650000, 2650000, 2650000, 2650000
2650000, 2650000, 2650000, 2650000, 2650000
2650000, 2650000, 2650000, 2650000, 2650000
2650000, 2650000, 2650000, 2650000, 2650000
2650000, 2650000, 2650000, 2650000, 2650000
2650000, 2650000, 2650000, 2650000, 2650000
```

```
2650000, 2650000, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0
iq=0, fa=1
x(1)=
0, 0.09843, 0.19685, 0.29528, 0.3937
0.49213, 0.59055, 0.68898,0.7874, 0.88583
0.98425
qf(1)=
1, 1, 1, 1, 1
1, 1, 1, 1, 1
x(12)=
0, 0.04921, 0.14764, 0.24606, 0.34449
0.44291, 0.54134, 0.63976, 0.73819, 0.83661
0.93504, 0.98425
qf(12)=
29.64, 31.13, 34.11, 36.88, 39.11
40.64,41.35,41.27, 40.48, 39.11
37.21, 36.26
jn=11,12
jst=
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2
$end
$frpmox
enrpu39=70, enrpu40=25, enrpu41=5, enrpu42=0
$end
```


## M501 Rod MR2

* GOESINS:

FILEO5='nullfile', STATUS='UNKNOWN', FORM='FORMATTED', CARRIAGE CONTROL='NONE'
$\star$

* GOESOUTS:

FILE06='M501-MR2. out', STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='M501-MR2.plot', STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'
/*****************************************************************************)
M501 ramp tested rodlet MR-2
\$frpen
im=48, nr=17, ngasr=45, na=9
\$end
\$frpcon
dco=0.4398, thkcld=0.02598, thkgap=0.00335, totl=0.98425, cpl=0.6732
$\mathrm{dspg}=0.374, \mathrm{dspgw}=0.05, \mathrm{vs}=2$
$h p l t=0.6$, rc=0, hdish=0.0113, dishsd=0.0969

```
 enrch=0.3, imox=1, comp=3.72
 fotmtl=2, gadoln=0, ppmh2o=0, ppmn2=0
 den=95, deng=0, roughf=0.0000787, rsntr=100, tsint=2911
 icm=4, cldwks=0.5, roughc=0.0000197, catexf=0.05, chorg=10
 fgpav=339.39, idxgas=1
iplant=-2, pitch=0.5799, icor=0, crdt=0, crdtr=0, flux=10*221000000000000000
 crephr=10, sgapf=31, slim=0.05, qend=0.3
 jdlpr=1, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
 ProblemTime=
 36.9, 75.2, 110.7, 144.9, 181.8
 215.9, 252.8, 291.1, 311.6, 319.8
 330.7, 363.5, 399.8, 436, 474.2
 509.8, 545.3, 583.8, 620.5, 657.4
 673.8, 684.7, 694.3, 740.8, 774.9
 810.5, 833.7, 882.9, 918.4, 953.9
 990.9, 1026.4, 1072.9, 1089.3, 1123.4
 1133, 1141.6, 1142.1, 1142.6, 1143.1
 1143.6, 1144.1, 1144.6, 1145.1, 1145.6
 1146.1, 1146.6, 1147.1
 qmpy=
 4.7, 4.682, 4.703, 4.731, 4.755
 4.788, 4.801, 4.825, 4.849, 4.859
 4.868, 5.98, 6.895, 6.895, 6.87
 6.867, 6.867, 6.867, 6.855, 6.855
 6.837, 6.828, 6.837, 6.907, 6.946
 6.937, 6.898, 6.898, 6.898, 6.757
 6.733, 6.69, 6.672, 6.648, 6.617
 6.59, 6.593, 6.986, 6.986, 6.986
 6.986, 6.986, 6.986, 6.986, 6.986
 6.986, 6.986, 12.762
 nsp=1
 p2=
 2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08
tw=
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 628.5, 628.5, 628.5
628.5, 628.5, 628.5, 628.5, 628.5
628.5, 628.5, 644
go=
2650000, 2650000, 2650000, 2650000, 2650000
2650000, 2650000, 2650000, 2650000, 2650000
2650000, 2650000, 2650000, 2650000, 2650000
```

```
2650000, 2650000, 2650000, 2650000, 2650000
2650000, 2650000, 2650000, 2650000, 2650000
2650000, 2650000, 2650000, 2650000, 2650000
2650000, 2650000, 2650000, 2650000, 2650000
2650000, 2650000, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0
iq=0, fa=1
x(1)=
0, 0.09843, 0.19685, 0.29528, 0.3937
0.49213, 0.59055, 0.68898, 0.7874, 0.88583
0.98425
qf(1)=
1, 1, 1, 1, 1
1, 1, 1, 1, 1
 1
x(12)=
0, 0.04921, 0.14764, 0.24606, 0.34449
0.44291, 0.54134, 0.63976, 0.73819, 0.83661
0.93504, 0.98425
qf(12)=
31.515, 34.25, 39.72, 42.46, 44.29
45.66, 45.66, 44.75, 43.38, 41.09
37.44, 35.615
jn=11,12
jst=
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2
$end
$frpmox
enrpu39=70, enrpu40=25, enrpu41=5, enrpu42=0
$end
```


## M501 Rod MR3

* GOESINS:
FILEO5='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
CARRIAGE CONTROL='NONE'
* 
* GOESOUTS:
FILE06='M501-MR3. Out',
STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='M501-MR3.plot',
STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'
/***************************************************************************)
M501 ramp tested rodlet MR-3
\$frpen
im=48, nr=17, ngasr=45, na=9
\$end

```
 $frpcon
 dco=0.4398, thkcld=0.02598, thkgap=0.00335, totl=0.98425, cpl=0.6063
 dspg=0.374, dspgw=0.05, vs=2
 hplt=0.6, rc=0, hdish=0.0113, dishsd=0.0969
 enrch=0.3, imox=1, comp=3.72
 fotmtl=2, gadoln=0, ppmh2o=0, ppmn2=0
 den=95, deng=0, roughf=0.0000787, rsntr=100, tsint=2911
 icm=4, cldwks=0.5, roughc=0.0000197, catexf=0.05, chorg=10
 fgpav=336.49, idxgas=1
iplant=-2, pitch=0.5799, icor=0, crdt=0, crdtr=0, flux=10*221000000000000000
 crephr=10, sgapf=31, slim=0.05, qend=0.3
 jdlpr=1, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
 ProblemTime=
 36.9, 75.2, 110.7, 144.9, 181.8
 215.9, 252.8, 291.1, 311.6, 319.8
 330.7, 363.5, 399.8, 436, 474.2
 509.8, 545.3, 583.8, 620.5, 657.4
 673.8, 684.7, 694.3, 740.8, 774.9
 810.5, 833.7, 882.9, 918.4, 953.9
 990.9, 1026.4, 1072.9, 1089.3, 1123.4
 1133, 1141.6, 1142.1, 1142.6, 1143.1
 1143.6, 1144.1, 1144.6, 1145.1, 1145.6
 1146.1, 1146.6, 1147.1
 qmpy=
 4.7, 4.682, 4.703, 4.731, 4.755
 4.788, 4.801, 4.825, 4.849, 4.859
 4.868, 5.98, 6.895, 6.895, 6.87
 6.867, 6.867, 6.867, 6.855, 6.855
 6.837, 6.828, 6.837, 6.907, 6.946
 6.937, 6.898, 6.898, 6.898, 6.757
 6.733, 6.69, 6.672, 6.648, 6.617
 6.59, 6.593, 8.47, 8.47, 8.47
 8.47, 8.47, 8.47, 8.47, 8.47
 8.47, 8.47, 12.351
 nsp=1
 p2=
 2248.08, 2248.08, 2248.08, 2248.08, 2248.08
 2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08, 2248.08, 2248.08
2248.08, 2248.08, 2248.08
tw=
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 644, 644, 644
644, 644, 644, 644, 644
644, 644, 644
```

```
go=
2650000, 2650000, 2650000, 2650000, 2650000
2650000, 2650000, 2650000, 2650000, 2650000
2650000, 2650000, 2650000, 2650000, 2650000
2650000, 2650000, 2650000, 2650000, 2650000
2650000, 2650000, 2650000, 2650000, 2650000
2650000, 2650000, 2650000, 2650000, 2650000
2650000, 2650000, 2650000, 2650000, 2650000
2650000, 2650000, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0
iq=0, fa=1
x(1)=
0, 0.09843, 0.19685, 0.29528, 0.3937
0.49213, 0.59055, 0.68898, 0.7874, 0.88583
0.98425
qf(1)=
1, 1, 1, 1, 1
1, 1, 1, 1, 1
 1
x(12) =
0, 0.04921, 0.14764, 0.24606, 0.34449
0.44291, 0.54134, 0.63976, 0.73819, 0.83661
0.93504,0.98425
qf(12)=
33.775, 35.11, 37.78, 40.5, 42.51
43.6, 43.74, 43.04, 41.68, 39.84
37.43, 36.225
jn=11,12
jst=
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2
$end
$frpmox
enrpu39=70, enrpu40=25, enrpu41=5, enrpu42=0
$end
```


## M501 Rod MR4

* GOESINS:
FILE05='nullfile', STATUS='UNKNOWN', FORM='FORMATTED',
CARRIAGE CONTROL='NONE'
* 
* GOESOUTS:
FILE06='M501-MR4. out',
STATUS='UNKNOWN', CARRIAGE CONTROL='LIST'
FILE66='M501-MR4.plot',
STATUS='UNKNOWN', FORM='FORMATTED',CARRIAGE CONTROL='LIST'

```
/**M5 M 0 1
ramp tested rodlet MR-4
 $frpon
 im=48, nr=17, ngasr=45, na=9
 $end
 $frpcon
 dco=0.4398, thkcld=0.02598, thkgap=0.00335, totl=0.98425, cpl=0.6575
 dspg=0.374, dspgw=0.05, vs=2
 hplt=0.6, rc=0, hdish=0.0113, dishsd=0.0969
 enrch=0.3, imox=1, comp=3.72
 fotmtl=2, gadoln=0, ppmh2o=0, ppmn2=0
 den=95, deng=0, roughf=0.0000787, rsntr=100, tsint=2911
 icm=4, cldwks=0.5, roughc=0.0000197, catexf=0.05, chorg=10
 fgpav=336.49, idxgas=1
 iplant=-2, pitch=0.5799, icor=0, crdt=0, crdtr=0, flux=10*221000000000000000
 crephr=10, sgapf=31, slim=0.05, qend=0.3
 jdlpr=1, nopt=0, nplot=1, ntape=0, nread=0, nrestr=0
 ProblemTime=
 36.9, 75.2, 110.7, 144.9, 181.8
 215.9, 252.8, 291.1, 311.6, 319.8
 330.7, 363.5, 399.8, 436, 474.2
 509.8, 545.3, 583.8, 620.5, 657.4
 673.8, 684.7, 694.3, 740.8, 774.9
 810.5, 833.7, 882.9, 918.4, 953.9
 990.9, 1026.4, 1072.9, 1089.3, 1123.4
 1133, 1141.6, 1142.1, 1142.6, 1143.1
 1143.6, 1144.1, 1144.6, 1145.1, 1145.6
 1146.1, 1146.6, 1146.61
 qmpy=
 4.7, 4.682, 4.703, 4.731, 4.755
 4.788, 4.801, 4.825, 4.849, 4.859
 4.868, 5.98, 6.895, 6.895, 6.87
 6.867, 6.867, 6.867, 6.855, 6.855
 6.837, 6.828, 6.837, 6.907, 6.946
 6.937, 6.898, 6.898, 6.898, 6.757
 6.733, 6.69, 6.672, 6.648, 6.617
 6.59, 6.593, 5.618, 5.618, 5.618
 5.618, 5.618, 5.618, 5.618, 5.618
 5.618, 5.618, 12.71
 nsp=1
 p2=
 2248.08, 2248.08, 2248.08, 2248.08, 2248.08
 2248.08, 2248.08, 2248.08, 2248.08, 2248.08
 2248.08, 2248.08, 2248.08, 2248.08, 2248.08
 2248.08, 2248.08, 2248.08, 2248.08, 2248.08
 2248.08, 2248.08, 2248.08, 2248.08, 2248.08
 2248.08, 2248.08, 2248.08, 2248.08, 2248.08
 2248.08, 2248.08, 2248.08, 2248.08, 2248.08
 2248.08, 2248.08, 2248.08, 2248.08, 2248.08
 2248.08, 2248.08, 2248.08, 2248.08, 2248.08
 2248.08, 2248.08, 2248.08
 tw=
 550, 550, 550, 550, 550
 550, 550, 550, 550, 550
 550, 550, 550, 550, 550
 550, 550, 550, 550, 550
 550, 550, 550, 550, 550
```

```
550, 550, 550, 550, 550
550, 550, 550, 550, 550
550, 550, 566.2, 566.2, 566.2
566.2, 566.2, 566.2, 566.2, 566.2
566.2, 566.2, 644
go=
2650000, 2650000, 2650000, 2650000, 2650000
2650000, 2650000, 2650000, 2650000, 2650000
2650000, 2650000, 2650000, 2650000, 2650000
2650000, 2650000, 2650000, 2650000, 2650000
2650000, 2650000, 2650000, 2650000, 2650000
2650000, 2650000, 2650000, 2650000, 2650000
2650000, 2650000, 2650000, 2650000, 2650000
2650000, 2650000, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0
iq=0, fa=1
x(1)=
0, 0.09843, 0.19685, 0.29528, 0.3937
0.49213, 0.59055, 0.68898, 0.7874, 0.88583
0.98425
qf(1)=
1, 1, 1, 1, 1
1, 1, 1, 1, 1
 1
x(12) =
0, 0.04921, 0.14764, 0.24606, 0.34449
0.44291, 0.54134, 0.63976, 0.73819, 0.83661
0.93504, 0.98425
qf(12)=
32.495, 33.94, 36.83, 39.68, 42.08
43.89, 44.93, 45.25, 44.84, 43.71
41.8, 40.845
jn=11,12
jst=
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 2, 2, 2
2, 2, 2, 2, 2
2, 2, 2
$end
$frpmox
enrpu39=70, enrpu40=25, enrpu41=5, enrpu42=0
$end
```


## A. 46 Studsvik Cladding Integrity Project Ramped Rods

The Studsvik Cladding Integrity Program (SCIP) has subjected 10 test rods to power ramp testing (Kallstrom 2005). Each test rod was subjected to a designated type of ramp test, which included staircase, short hold, long hold, and two-step power ramp tests. Each test rod was fabricated from a rodlet sectioned from a previously irradiated father rod.

Four ramp test rods were made by refabricating rodlets from BWR father rods that had been irradiated in Kernkraftwerk, Leibstadt. These test rods were labeled KKL-1, KKL-2, KKL-3, and KKL-4 and were irradiated to approximately $63,67,56$, and 40 megawatt-days per metric ton of uranium (MWd/kgU) average rodlet burnup, respectively. Before ramp testing, each rod was conditioned for a designated period of time and LHR. The first ramp test, KKL-1, was aimed at defining the ramp terminal level where rod failure would occur. The rod was subjected to a staircase ramp, and after six steps of $5 \mathrm{~kW} / \mathrm{m}$ with a 1 hour hold time between steps, the rodlet failed after 40 minutes at an LHR of $42 \mathrm{~kW} / \mathrm{m}$. To determine if the failure, which was caused by an outside-in crack, was dependent on burnup, a similar test was performed on KKL-3. A staircase ramp consisting of eight steps at $5 \mathrm{~kW} / \mathrm{m}$ with a 1 hour hold time between steps was performed up to $52 \mathrm{~kW} / \mathrm{m}$. After holding for 12 hours at $52 \mathrm{~kW} / \mathrm{m}$, no failure was observed in KKL-3. Ramp tests of the other two rods, KKL-2 and KKL-4, were aimed at studying the geometric changes during a power transient and their dependence on burnup. The rods, KKL-2 and KKL4 , were held at 41 and $45 \mathrm{~kW} / \mathrm{m}$ for 30 and 5 seconds, respectively. Neither KKL-2 or KKL-4 failed during ramp testing.

Two ramp test rods, M5-H1 and M5-H2, were fabricated from the same father rod, which had been irradiated in Ringhals 4 PWR and used to study the influence of holding time on geometric changes. The rods, M5-H1 and M5-H2, had been irradiated to a rodlet-average burnup of 67 and $68 \mathrm{MWd} / \mathrm{kgU}$, respectively, and conditioned for a designated period of time and LHR prior to ramp testing. During the short hold and long hold ramp tests, holding times of 5 seconds and 12 hours were used on M5-H1 and M5-H2, respectively, at an LHGR of $40 \mathrm{~kW} / \mathrm{m}$. Neither rod failed during the ramp test.

Ramp testing was performed on rod $\mathrm{O} 2(55 \mathrm{MWd} / \mathrm{kgU}$ burnup) to study geometric changes and PCI. Rod O2 had been previously irradiated in the BWR Oskarshamn 2 (Sweden) to an average rodlet burnup of $55 \mathrm{MWd} / \mathrm{kgU}$. A short hold ramp test was performed by holding rod O2 at an LHR of $45 \mathrm{~kW} / \mathrm{m}$ for 30 seconds. Rod O 2 did not fail during the ramp test.

Ramp test rods Z-2, Z-3, and Z-4 had each been irradiated to $76 \mathrm{MWd} / \mathrm{kgU}$. Rods Z-3 and Z-4 were irradiated in the PWR North Anna while rod Z-2 was irradiated in the PWR Vandellos. Rod Z-3 was intended to study the hydrogen embrittlement by ramping the rod to an LHR of $40 \mathrm{~kW} / \mathrm{m}$ for a 5 second hold. However, failure occurred at an LHR of $39 \mathrm{~kW} / \mathrm{M}$, which prevented the short hold ramp test from being completed. Rods Z-2 and Z-4 were intended to study delayed hydrogen cracking (DHC), and were subjected to two-step power ramp tests. Rod Z-2 was initially ramped to an LHR of $35 \mathrm{~kW} / \mathrm{m}$ and held for 6 hours before being ramped to an LHR of $40 \mathrm{~kW} / \mathrm{m}$ and held for an additional 6 hours. Rod Z-4 was initially ramped to $33 \mathrm{~kW} / \mathrm{m}$ and held for 6 hours before being ramped to $38 \mathrm{~kW} / \mathrm{m}$ and held for an additional 6 hours. The rods, Z-2 and Z-4, did not fail during the two-step power ramp.

These 10 rods were used to assess the FRAPCON-3.4 predictions of cladding hoop strain. The input files used for these cases are not included in this report due to the limited availablility and sensitivity of this information.


Pacific Northwest
NATIONAL LABORATORY
U.S. DEPARTMENT OF ENERGY

Proudly Operated by Battelle Since 1965

902 Battelle Boulevard
P.O. Box 999

Richland, WA 99352
1-888-375-PNNL (7665)


[^0]:    GOESINS:

